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Summary:
• quick introduction to membrane computing
1. from cells to models
2. references
3. (types of) results
4. (types of) applications

• Numerical P systems:
– the sequential case
1. the idea; two examples
2. formal definition
3. results

– the parallel case
1. considering “enzymes”
2. two types of parallelism
3. computing power results
4. computational complexity results

– applications
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MEMBRANE COMPUTING

= branch of natural computing, aiming to abstract computing models from the
living cell structure and functioning, and from cells cooperation in tissues, organs,
brain, etc.

= modeling framework, general and versatile (not a single model)

= basically, a framework for handling multisets in a compartmentalized spatial
structure

= possibilities to trade-off (exponential) space (created in a biological-like way) with
time
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Framework: Natural Computing (Unconventional Computing)

Preface of Handbook of Natural Computing, 4 vols., Springer, Berlin, 2012,
edited by G. Rozenberg, Th. Bäck, J.N. Kok:

Natural Computing is the field of research that investigates human-designed
computing inspired by nature as well as computing taking place in nature, that
is, it investigates models and computational techniques inspired by nature, and also
it investigates, in terms of information processing, phenomena taking place in nature.

A. Adamatzky, ed., Advances in Unconventional Computing, 2 vols., Springer,
Berlin, 2016

H. Zenil, ed., A Computable Universe. Understanding and Exploring Nature as
Computation, World Scientific, 2013

J. Gruska, etc.
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Why natural computing?

1. limits of Turing – von Neumann paradigm

2. limits of current technology (Moore law, communication complexity)

3. adaptation, (deep!)learning, self-healing, robustness, nondeterminism, etc.

4. energy efficiency

5. challenge for matematics/informatics
(what means to compute in a natural way?)

6. by-products (biology, medicine)

7. a new framework for understanding biology/nature
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Everything started about 20 years ago, in Turku, Finland...

...after DNA computing
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Let’s go to the cell!
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Membrane computing — Starting from the cell
[Initial] Goal: abstracting computing models/ideas from the structure
and functioning of living cells (and from their organization in tissues,
organs, organisms)

hence not producing models for biologists (although, this is now a tendency)
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THE BASIC IDEA
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Functioning (basic ingredients):

• nondeterministic choice of rules and objects

• maximal parallelism

• transition, computation, halting

• various ways to define the output (generative, accepting, computing)
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Some references (branches, classes of P systems):

• Gh. Păun: Computing with Membranes. Journal of Computer and System
Sciences, 61, 1 (2000), 108–143, and Turku Center for Computer Science-
TUCS Report No 208, 1998 (www.tucs.fi)

• Gh. Păun: P systems with active membranes: Attacking NP-complete problems,
J. Automata, Languages, and Combinatorics, 6, 1 (2001), 75–90

• A. Păun, Gh. Păun: The power of communication: P systems with
symport/antiport, New Generation Computing, 20, 3 (2002), 295–306

• C. Martin-Vide, J. Pazos, Gh. Păun, A. Rodriguez-Paton: Tissue P systems,
Theoretical Computer Sci., 296, 2 (2003), 295–326

• Gh. Păun, R. Păun: Membrane computing and economics: Numerical P systems,
Fundamenta Informaticae, 73, 1-2 (2006), 213–227

• M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems, Fundamenta
Informaticae, 71, 2-3 (2006), 279–308

• Gh. Păun, M.J. Pérez-Jiménez: Solving problems in a distributed way in
membrane computing: dP systems, Int. J. of Computers, Communication and
Control, 5, 2 (2010), 238–252.
(other branches: conformon, population, kernel, metabolic, etc.)
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Monographs/volumes in membrane computing

1. Gh. Păun: Membrane Computing. An Introduction. Springer, 2002 (translated
in Chinese in 2012)

2. G. Ciobanu, Gh. Păun, M.J. Pérez-Jiménez, eds.: Applications of Membrane
Computing. Springer, 2006

3. P. Frisco: Computing with Cells. Advances in Membrane Computing. Oxford
Univ. Press, 2009

4. G. Ciobanu: Membrane Computing. Biologically Inspired Process Calculi. The
Publ. House of Al.I. Cuza Univ., Iaşi, 2010

5. Gh. Păun, G. Rozenberg, A. Salomaa, eds.: The Oxford Handbook of Membrane
Computing. Oxford Univ. Press, 2010

6. V. Manca: Infobiotics. Information in Biotic Systems. Springer, 2013

7. P. Frisco, M. Gheorghe, M.J. Pérez-Jiménez, eds.: Applications of Membrane
Computing in Systems and Synthetic Biology. Springer, 2014

8. Gexiang Zhang, Jixiang Cheng, Tao Wang, Xueyuan Wang, Jie Zhu:
Membrane Computing: Theory and Applications. Science Press, Beijing, 2015

9. NEW Gexiang Zhang, M.J. Pérez-Jiménez, M. Gheorghe:
Real-Life Applications with Membrane Computing. Springer, 2017
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News in Membrane Computing:
creation (2016) of IMCS = International MC Society (web page under construction)

1. three yearly meetings: CMC, ACMC, BWMC

2. Bulletin of the IMCS: http://membranecomputing.net/IMCSBulletin/

3. three yearly prizes (PhD, theory, application of the year)

4. International Journal of MC

5. a series of books

6. others (“connecting people”)
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Formal definitions:

Catalytic P systems: Π = (O,C, μ,w1, . . . , wm, R1, . . . , Rm, iin, iout)
rules: u → v, a → v, ca → cv

(v can have target indications, (a, here), (a, in), (a, out))

Symport/antiport P systems: Π = (O, μ,w1, . . . , wm, E,R1, . . . , Rm, iin, iout)
rules: (u, out; v, in) (antiport), (u, out), (u, in) (symport)

Spiking neural P systems: Π = (O, σ1, . . . , σm, syn, iin, iout)
neurons: σi = (ni, Ri)
rules: E/ac → ap; d (spiking), as → λ (forgetting)
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(Types of) Results:

• characterization of Turing computability (RE, NRE, PsRE)
Examples: by catalytic P systems (2 catalysts) [Sosik, Freund, Kari, Oswald]

by (small) symport/antiport P systems [many]
by spiking neural P systems [many]

• polynomial solutions to NP-complete problems (by using an exponential workspace
created in a “biological way”: membrane division, membrane creation, string
replication, etc.) [Sevilla team], [Madras team], [Milano team], [Alhazov, Pan,
Sosik, Murphy, Woods] etc.
even characterizations of PSPACE

• other types of mathematical results (normal forms, hierarchies, determinism versus
nondeterminism, complexity) [Ibarra group]

• connections with ambient calculus, Petri nets, X-machines, quantum computing,
lambda calculus, brane calculus, etc. [many]

• simulations and implementations

• applications
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Some FAQ:

• computing beyond Turing? (no, but ...acceleration)

• what kind of implementation? (none, but ...Sevilla, Adelaide, Madrid, Technion-
Haifa)

• why so many variants?

• why so powerful? (RE = CS + erasing)
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(Types of) Applications:

• biology, medicine, ecosystems (continuous versus discrete mathematics) [Sevilla,
Verona, Milano, Sheffield, Ruston-Lousiana, Trento, etc.]

• computer science (computer graphics, sorting/ranking, 2D languages,
cryptography, general model of distributed-parallel computing) [many]

• linguistics (modeling framework, parsing) [Tarragona, Chişinău]

• optimization (membrane algorithms [Nishida, 2004], [many])

• economics ([Warsaw group], [R. Păun], [Vienna group])

• robot control ([Politehnica University Bucharest], [Opava])
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Numerical P systems – directly, by an example:
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Transition from t = 0 to t = 1:
Sum of distribution coefficients: C1 = 2, C2 = 3, C3 = 4, C4 = 4
Productions:

F1(1) = 2, F2(3, 1, 0) = 12, F3(2, 1) = 4, F4(2, 2, 2) = 8.

“Unitary portions” in each compartment: 1, 4, 1, 2, respectively.
After repartitions:

x1,1(1) = 1,

x1,2(1) = 2, x2,2(1) = 4, x3,2(1) = 6,

x1,3(1) = 2, x2,3(1) = 5,

x1,4(1) = 2, x2,4(1) = 2, x3,4(1) = 2.
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Now, the productions are

F1(1) = 2, F2(2, 4, 6) = −15, F3(2, 5) = −12, F4(2, 2, 2) = 8,

with the portions 1,−5,−3, 2, respectively, hence we get

x1,1(2) = 1,

x1,2(2) = −2, x2,2(2) = −5, x3,2(2) = 3,

x1,3(2) = −6, x2,3(2) = −8,

x1,4(2) = 2, x2,4(2) = 2, x3,4(2) = 2.

and so on
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A simple (deterministic) example:
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x1,1[0]

x1,2[0]
(2x1,2 + 1 → 1|x1,1)

x1,3[0]

(2(x1,3 + 1) → 1|x1,3 + 1|x1,2)

Variable x1,3 increases by 1 at each step, also transmitting its value to x1,2. In
turn, compartment 2 transmits the value 2x1,2+1 to x1,1, which is never consumed,
hence its value increases continuously. We start with all variables equal to 0. Thus,
x1,1 starts from 0 and continuously receives 2i + 1, for i = 0, 1, 2, 3, . . ., which

implies that in n steps we get for x1,1 the value
∑n−1

i=0 (2i + 1) = n2, that is,
Set(Π, x1,1) = {n2 | n ≥ 0}.
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A simple (non-deterministic) example:
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1
x1,1[1]

2x1,1 → 1|x1,1

3x1,1 → 1|x1,1

Set(Π, x1,1) = {2i3j | i ≥ 0, j ≥ 0}.
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3. C. Buiu, O. Arsene, C. Cipu, M. Pătrascu: A software tool for modeling and
simulation of numerical P systems. BioSystems, 103, 3 (2011), 442–447.

4. C. Buiu, C.I. Vasile, O. Arsene: Development of membrane controllers for mobile
robots. Information Sciences, 187 (2012), 33–51.

5. A.B. Pavel, O. Arsene, C. Buiu: Enzymatic numerical P systems - a new
class of membrane computing systems. Proc. IEEE Fifth Intern. Conf. on
Bio-Inspired Computing: Theories and Applications (BIC-TA 2010) Liverpool,
2010, 1331–1336.

6. A.B. Pavel, C. Buiu: Using enzymatic numerical P systems for modeling mobile
robot controllers. Natural Computing, 11, 3 (2012), 387–393.
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Software and implementation:

• P-lingua – Sevilla, Spain:
http://www.p-lingua.org/wiki/index.php/Main Page

• Parallel simulators for MC on GPU Project – Sevilla, Spain:
http://sourceforge.net/p/pmcgpu

M. Garćıa-Quismondo, L. F. Maćıas-Ramos, M. J. Pérez-Jiménez. Implementing
enzymatic numerical P systems for AI applications by means of graphic processing
units. Beyond Artificial Intelligence, volume 4 of Topics in Intelligent Engineering
and Informatics, 2013, pp. 137–159.
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(Relatively) Formal definition:

Π = (μ, (V ar1, P r1, V ar1(0)), . . . , (V arm, P rm, V arm(0)), xj0,i0),

where: μ is a membrane structure with m membranes labeled injectively by
1, 2, . . . ,m, V ari = {xj,i | 1 ≤ j ≤ ki} is the set of variables from region i,
Pri is the set of programs from region i, V ari(0) is the set of initial values for the
variables in region i, and xj0,i0 is the output variable

Program (l from region i):

prl,i = (Fl,i(x1,i, . . . , xki,i) → cl,1|v1 + cl,2|v2 + . . .+ cl,ni
|vni

)

“production function” → “repartition protocol”

The “production” at time t in compartment i is divided by Cl,i =
∑ni

s=1 cl,s, and the
“unitary portions” are distributed according to the coefficients cl,s. The programs
are nondeterministically chosen. Set(Π, xj0,i0) is the generated set.
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Computing power:

Families:
NNPm(polyn(r), nneg, α)
m ≥ 1 (membranes), n ≥ 0 (degree), r ≥ 0 (variables), α ∈ {div, lost, carry, stop}
(nneg = non-negative coefficients, D for deterministic, * for unbounded)

Theorem 1. (i) DNN+P1(poly
1(1), nneg, div)− SLIN+

1 �= ∅.
(ii) SLIN+

1 ⊂ DNN+P∗(poly1(1), nneg, div).

Theorem 2. N+RE = NN+P8(pol
5(5), div) = NN+P7(poly

5(6), div).

The proof [R. Păun, Gh. Păun, 2006] is based on the characterization of RE sets of
numbers as positive values of polynomials with integer values, [Matijasevitch].
Open problems: (i) universality for deterministic systems; (ii) improve the parameters.
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Enzymatic numerical P systems: also programs of the form

Fl,i(x1,i, . . . , xki,i)|ej,i → cl,1|v1 + cl,2|v2 + . . .+ cl,ni
|vni

,

where ej,i is a variable from V ari different from x1,i, . . . , xki,i, and from v1, . . . , vni
.

Applicable at a time t only if ej,i(t) > min(x1,i(t), . . . , xki,i(t)).

Theorem 3. NRE = NNP7(poly
5(5), enz, seq).

[Vasile, Pavel, Dumitrache, Păun, 2012]
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Parallelism:

• oneP = all programs in a region (which can be applied, under enzymes control)
are applied, but each variable is used only once

• allP = as above, with each variable appearing in as many times as necessary

Families:
NNPm(polyn(r), enz, nneg, α, β),
m ≥ 1 (membranes), n ≥ 0 (degree), r ≥ 0 (variables),
α ∈ {div, lost, carry, stop}, β ∈ {seq, allP, oneP}

always α = div (hence omitted)
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Theorem 4. NRE = NNP∗(poly1(2), enz, oneP ) = NNP4(poly
1(6), enz, allP ).

[C.I. Vasile, A.B. Pavel, I. Dumitrache, Gh. Păun, 2012],

[C.I. Vasile, A.B. Pavel, I. Dumitrache, 2013]

Theorem 5. NRE = NNP1(poly
1(1), enz, allP ) = NNP1(poly

1(1), enz, oneP ).

Theorem 6. There are universal enzymatic numerical P systems:

– with 31 variables and 61 programs, working in the allP mode

– with 156 variables and 105 programs, working in the oneP mode

– with 137 variables and 108 programs, working in the oneP mode

[A. Leporati, A.E. Porreca, C. Zandron, G. Mauri, 2013]

Open problems: (i) what about the non-enzymatic systems? (ii) improvements also
for seq? (ii) improve the parameters
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Complexity results: [A. Leporati, A.E. Porreca, C. Zandron, G. Mauri, 2013]

Definition: L ⊆ {0, 1}∗ is decided by Π (enzymatic, allP) in polynomial time, if Π
contains two variables acc, rej and, after introducing 1x (for all x ∈ L) in a specified
variable, Π halts in O(|x|k) time, and:
• if x ∈ L, then acc = 1, rej = 0

• if x /∈ L, then acc = 0, rej = 1

Notation: P−ENP(X),X ⊆ {+,−,×,÷} (X = operations used in production
functions)

Theorem 7. (i) P−ENP(+,−) = P, (ii) P−ENP(+,−,×,÷) = PSPACE.

Open problems: what about oneP , seq, non-enzymatic?
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Many open problems and research topics:

• considering migrating variables (Fj,i(xp1, . . . , xpk) → cj,1|(xr1, tar1) + . . . +
cj,q|(xrq, tarq))

• generating strings (symbols are associated with numbers sent to the environment
– variable out there)

• controlling the computation by means of thresholds (for variables,
for production,...)

• borrowing ideas from SN P systems to numerical P systems, and conversely

• etc.
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Applications:

• economics (recent): E. Sánchez Karhunen, L. Valencia-Cabrera, MC Applications
in Computational Economics, BWMC, February 2017

• robot controlling: Polytechnical University of Bucharest, as well as Opava, Czech
Republic:
C.I. Vasile, A.B.Pavel, I. Dumitrache, J. Kelemen: Implementing obstacle
avoidance and follower behaviors on Koala robots using numerical P systems,
Proc. 10th Brainstorming Week on Membrane Computing, Sevilla, 2012, Fenix
Editora, Sevilla, 2012, vol. II, 215–227.

NEW Andrei George Florea, Cătălin Buiu: Membrane Computing for Distributed
Control of Robotic Swarms: Emerging Research and Opportunities, IGI Global,
2017

• engineering (the pole balancing problem): D. Llorente-Rivera, M.A. Gutiérrez-
Naranjo (BWMC, 2-6 February, 2015, Sevilla, Spain)

• (recent) multi-dimensional decision making: S. Raghavan, K. Chandrasekaran,
ACMC 2017 (21-25 September, 2017, Chengdu, China)

• what else? (complexity results are encouraging)
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Koala robot
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Thank you!

...and please do not forget: 19th Brainstorming Week on MC, February 2018

Bulletin of the IMCS:
http://membranecomputing.net/IMCSBulletin/

http://ppage.psystems.eu
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