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Grobner Bases Introduction

In BB’s PhD thesis 1965 (and aequ math 1970):

[¢]

Introduction of the Notion of Grobner bases: F is Grobner basis iff reduction w.r.t. F
is unique.

Charaterization Theorem: F is Grobner basis iff all S-polynomials of F reduce to 0
w.r.t. F.

S-polynomial of fandg:= u.f - v.g (with suitable power products u, v)

Note: The Charaterization Theorem is an algorithm for deciding whether a given F is a
Grébner basis!

Algorithm for constructing Grobner bases: Iterate formation of S-polys and add non-
zero remainders.

Correctness of algorithm: by the Characterization Theorem.

Termination of algorithm: by (a re-invention) of Dixon’s Lemma.
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Grobner Bases Introduction

In BB’s PhD thesis 1965 (and aequ math 1970):

o Applications:

linearly independent basis for residue class ring modulo Ideal(F),
multiplication table of associative algebra modulo Ideal(F),
complete solution of algebraic systems F =0,

computation of Hilbert function of F.

o Complete implementation of the algorithm on ZUSE Z23 computer and example
computations.

o A first complexity analysis for the bivariate case.

References:

B. Buchberger.

An Algorithm for Finding the Basis Elements in the Residue Class Ring Modulo a Zero
Dimensional Polynomial Ideal (German).

PhD thesis, Mathematical Institute, University of Innsbruck, Austria, 1965.

(English Translation in Journal of Symbolic Computation, Special Issue on Logic, Mathe-
matics, and Computer Science. Vol. 41, pp. 475 - 511, 2006).

B. Buchberger.

An Algorithmic Criterion for the Solvability of Algebraic Systems of Equations (German).
Aequationes Mathematicae, Vol. 3, pp. 374-383, 1970.

(English translation in B.Buchberger, F.Winkler eds.: Grébner Bases and Applications,
London Math.Society Lecture Note Series. Vol 251, pp. 535-545, Cambridge University
Press.1998.
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Improvements

BB 1979: Introduction of chain criterion for eleminating the consideration of (many) unnec-
essary S-polynomials. Makes algorithm, in many cases, much more efficient.

BB 1985: Good strategy (in many, not in all cases): First, completely “auto-reduce” ( =
“GauB’schen elimination”) . Then only S-polynomials! (Sometimes, not necessary any
more!)

Huge literature on the subject :

Many (approx. 2000) papers on theory, algorithmic improvements, complexity of
Grobner bases.

Many (approx. 30) textbooks.
Many implementations (Mathematica, Maple, Singular, CoCoA, ...)

Most algorithms and implementations for Grébner bases based on S-polynomials
approach.
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Approaches Not Based on S-Polynomials (but, rather on “Linear Algebra on
Power Products”)

O Grobner’s original 1954 idea for obtaining a multiplication table for the associative
algebra modulo Ideal(F). (Termination was a question and this lead to BB 65.)

O Mayr’s approach 1996: for obtaining an exponential space upper bound for Grébner
bases computation.

O Faugére’s et al 1999, 2002 approach: F4, (termination still based on S-polynomials ?),
F5 (termination based on ?)

O Grigoriev approach 2000: for results on complexity.

References:

B. Buchberger.
A Criterion for Detecting Unnecessary Reductions in the Construction of Grébner Bases. In
Proceedings of EUROSAM' 79, Springer LNCS, pp. 3-21, 1979.

B. Buchberger

Grobner Bases: An Algorithmic Method in Polynomial Ideal Theory.

Chapter 6 in: N.K. Bose (ed.), Multidimensional Systems Theory - Progress, Directions and
Open Problems in Multidimensional Systems Theory, Reidel Publishing Company,
Dodrecht - Boston - Lancaster, 1985, pp. 184-232.

K. Klhnle, E.W. Mayr.
Exponential Space Computation of Grobner Bases. Proceedings of ISSAC’96, Zurich,
ACM, pp. 63 - 71.

J.C. Faugére.
A New Efficient Algorithm for Computing Groebner Bases (F4). h
Journal of Pure and Applied Algebra, 139 : 61-88, 1999.

J.C. Faugére.
A New Efficient Algorithm for Computing Groebner Bases Without Reductions to Zero (F5).
ISSAC 2002, pages 75-83, 2002.

D. Grigoriev.

Bounds on Numbers of Vectors of Multiplicities for Polynomials which are Easy to Com-
pute.

Proc.ACM Intern.Conf.Symbolic and Algebraic Computations, Scotland, 2000, p .137 - 145.
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Connection to “Linear Algebra on Power Products”

| have often been asked what is the relation of Grobner bases with resultants.

Repeated resultants (eliminating variables one by one) for solving systems is not the
same as computing Grébner bases!

More appropriate view:
Univariate case:

GCD by Euclid versus GCD by triangularizing the Sylvester matrix
(solvability by determinant criterion).

Linear multivariate case:

decoupled by GauR versus decoupled by triangularizing the coefficient
matrix  (solvability by determinant criterion).

Non-linear multivariate case:

Grobner basis by S-polys versus Grobner basis by triangularizing which
(?) matrix  (solvability by determinant criterion).
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Macaulay - Triangularize - Contour: A Method but Not an Algorithm

In 1983, | proved that the following steps yield a Grobner basis for any polynomial set F:

S:= Macaulay(F):= set of all multiples u . f (“shifts”) of the polynomials f in F with all
power products u.

Consider the elements in Macaulay(F) as rows of an (infinite) matrix with the columns
numbered by the power products and ordered according to the admissible ordering of
power products w.r.t. to which one wants to find the Groebner basis for F.

T:= Triangularized(S). (In fact this is nothing else then a special kind of auto-reduction of
the polynomials in the matrix.)

C:= Contour(T) := the set of those polynomials in T whose leading power products are
not multiple of the leading power product of any other polynomial in T.

Then C is a finite Groebner basis of the original set F. (Finiteness can be proved, again,
by applying Dixon’s lemma.)

Proof Sketch:
VectorSpace( Sylvester ( F)) = Ideal( F).
VectorSpace( Sylvester ( F)) = VectorSpace( Triangularized( Sylvester ( F)).

Leading powerproduct of any f in Ideal(F) must occur in Triangularized( Sylvester( F)) and,
hence can be reduced by a polynomial in

Contour ( Triangularized( Sylvester( F))).

In fact, | had this result much earlier but | did not think it was worth publishing because it
only a “method”, not an algorithm.

Reference:

B. Buchberger.

Miscellaneous Results on Groebner Bases for Polynomial Ideals .

Technical Report 83/1, University of Delaware, Department of Computer and Information
Sciences, 1983.
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Upper Bound Would Lead to an Algorithm

If we knew a finite a priori bound on the degrees of the multiplies u . f that have to go
into Sylvester(F) in order to guarantee that

Contour (Triangularized (Sylvester( F)))
is a Grébner basis for F, then the above method would be an algorithm.
Upper bound in terms of

n (number of polys in F),
r (number of polynomials in F),
d (maximum degree of polynomials in F).

Over the years, | proposed this problem of finding such an upper bound a couple of
times to my PhD students. However, only recently (2014) one of them, Manuela
Wiesinger-Widi, stayed with this problem and solved it by combining Hermann'’s and
Dube’s bounds in a clever way.
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Two Known Bounds

Hermann Bound: If g is in Ideal( F) then there exist q 1, ..., q ; such that

r

g:Z(CI i F )

i=1

and, for all i,

n-1
degree (q ;) =< degree (g) + (rd)?.
0

.

Dubé Bound: If G is the reduced Grobner basis of F then, for all g in G,
degree(g) < 2 (ﬁ + d) o .
References:

T.W. Dubé.
The Structure of Polynomial Ideals and Grdbner Bases.:
SIAM Journal on Computing, 19 (4) : 750-773, 1990.

G. Hermann.

The Question of Finitely Many Steps in Polynomial Ideal Theory (German).
Mathematische Annalen, 95 : 736—788, 1926.

(English translation in ACM SIGSAM Bull.32 (3), pages 8-30, 1998.)
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Wiesinger’s Theorem

Theorem (Manuela Wiesinger-Widi 2014): In the above procedure, it suffices to take
the power products u with degree less or equal to

In fact, the resulting Groebner basis will be head-reduced.
Also, by the same approach, the following theorem can be proved.

Theorem (Manuela Wiesinger-Widi 2014): If, in the above procedure, one considers
the matrix of multiples u . f with power products u whose degree is less or equal

n-1 )
(rd)?
0

.

then 1 is in Ideal(F) if and only if the above procedure yields a matrix containing a polyno-
mial with leading power product 1.

Note: The above Macaulay matrix seems to be the appropriate analogue to the univariate
Sylvester matrix in the univariate case.

Reference:

M. Wiesinger-Widi.

Grobner Bases and Generalized Sylvester Matrices.

Ph.D. Thesis, Johannes Kepler University, Institute for Symbolic Computation, submitted
2014.
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Proof of Wiesinger’s Theorem

Lemma: If G is a finite Grobner basis for F and the finite (truncated Sylvester) matrix S that
contains all the multiples u . f with fin F and the power product u occuring in one of the
g - of the presentations

.
g = (q .F )
=1

§

of the polynomials in G, and T = Triangularized( S), then Contour( T) is also a (head-
reduced) Grobner basis of F.

Proof of Lemma: G c VectorSpace( S) = Vectorspace ( Triangularized( S)). Every leading
power product of a polynomial g in G must occur among the leading power products of T
since T is triangularized. By a wellknown property of Grobner bases, all polys in G that are
not on Contour( T) can be canceled.

Proof of First Theorem :
By Dubé, we know that there exists a Grobner basis G for F with

degree(g) < 2 (£+d)2nil,

forallgin G.
By Hermann, each of these g has a presentation

r

g:Z(CI i« F 3)

i=1
such that, for all i,

n-1
degree (q ;) =< degree (g) + (rd)y?.
0

.

Hence, if we take all the multiples u . f described in the Theorem into the initial (truncated)
Sylvester matrix, by the above Lemma, the contour of the triangularized matrix is a (head-
reduced) Grébner basis.

Proof of Second Theorem : Similar. Note that { 1} is a Grébner basis. Hence degree( g) in
the previous proof becomes zero.
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Is the Macaulay / Triangularize / Contour Algorithm Practical?
The method, at first sight, is not “practical” for computing a Grobner basis of F:

o The polys in the S-poly algorithm for Grobner bases, typically, stay way below the above
upper degree bounds!

o The S-poly algorithm for Grébner bases, typically, only produces very few of the rows in
Macaulay(F).

(Example: The Grobner basis computation of
{-x+xy?, x*y-x}

by S-polynomials does not exceed degree four whereas the above bound, for this case,
would request us to first set up a matrix with polynomials of up to degree 155.)

In other words, BB 1965 S-poly algorithm can be considered as an efficient way of
avoiding to work with big Macaulay matrices.

Analogy in case n=2: Euclid’s algorithm can be considered as an efficient way of avoid-
ing to work with big Macaulay matrices.
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A Frame for Faugére’s et al. and Habicht’s Approach

Anyway, the above results can be seen as a theoretical frame for the Grobner 1954
approach and more recent algorithms for constructing Grébner bases (Faugére F4 and
F5, Grigoriev 2000).

Also, the above theorem and algorithm suggests to extend Habicht’s 1948 theory of
subresultants (for the univariate case), which gives a priori estimates on the coefficients
that may appear in GCD computations, to the general case of Grobner bases. This could
also have relevance for the numeric computation of Grébner bases.
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A Side-Step: Automated Proofs in Grobner Bases Theory

In the Theorema Project (see today Wolfgang Windsteiger’s talk), we take Grobner bases theory
as a benchmark for automated formal proving.

My former PhD student Alexander Maletzky did a complete implementation of Grébner bases
theory and is now working on the Macaulay-based theory.
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See Groebner / Macaulay Laboratory.

One sees that the Macaulay / Triangularize / Contour may be practically interesting but much more
theory and experimenting is necessary.



