
From Decision Procedures
to Synthesis Procedures

RUZICA PISKAC

YALE UNIVERSITY

Why?
• ease software development
• increase programmer productivity
• fewer bugs

Software Synthesis

2

Software synthesis = a technique for automatically
generating code given a specification

Challenges
• synthesis is often a computationally hard task
• new algorithms are needed

ComFuSy - Complete
Functional Synthesis
WORK DONE DURING MY PHD STUDIES

JOINT WORK WITH VIKTOR KUNCAK, MIKAEL MAYER AND PHILIPPE
SUTER

3

4

Software Synthesis

val bigSet =

val (setA, setB) = choose((a: Set, b: Set)) =>

(a.size == b.size && a union b == bigSet && a intersect b == empty))

Code
val n = bigSet.size/2
val setA = take(n, bigSet)
val setB = bigSet −− setA

5

Software Synthesis

val bigSet =

val (setA, setB) = choose((a: Set, b: Set)) =>

(a.size == b.size && a union b == bigSet && a intersect b == empty))

Code
assert (bigSet.size % 2 == 0)
val n = bigSet.size/2
val setA = take(n, bigSet)
val setB = bigSet −− setA

“choose” Construct

 specification is part of the Scala language

 two types of arguments: inputs and outputs

 a call of the form

corresponds to constructively solving the quantifier
elimination problem

where a is a parameter

6

val x1= choose(x ⇒ F(x, a))

),(. axFx

Complete Functional Synthesis

complete = the synthesis procedure is guaranteed to find
code that satisfies the given specification

functional = computes a function that satisfies a given
input / output relation

Important features:

 code produced this way is correct by construction –
no need for further verification

 a user does not provide hints on the
structure of the generated code

7

Complete Functional Synthesis

 Note: pre(a) is the “best” possible

8

Definition (Synthesis Procedure)

A synthesis procedure takes as input a formula F(x, a) and
outputs:

1. a precondition formula pre(a)

2. list of terms Ψ

such that the following holds:

]:[)(),(.  xFapreaxFx

From Decision Procedure to
Synthesis Procedure

 based on quantifier elimination / model generating
decision procedures

 fragment in general undecidable

 decidable for logic of linear integer (rational, real)
arithmetic, for Boolan Algebra with Presburger
Arithmetic (BAPA)

),(.. yxFyx

9

Synthesis for Linear Integer
Arithmetic – Example / Overview

10

choose((h: Int, m: Int, s: Int) ⇒ (
h * 3600 + m * 60 + s == totalSeconds

&& h ≥ 0
&& m ≥ 0 && m < 60
&& s ≥ 0 && s < 60))

Returned code:

assert (totalSeconds ≥ 0)
val h = totalSeconds div 3600
val temp = totalSeconds + (-3600) * h
val m = min(temp div 60, 59)
val s = totalSeconds + (-3600) * h + (-60) * m

Synthesis Procedure - Overview
• process every equality: take an equality Ei, compute a

parametric description of the solution set and insert
those values in the rest of the formula

 for n output variables, we need n-1 fresh new variables

 number of output variables decreased by 1

 compute preconditions

 at the end there are only inequalities – similar
procedure as in [Pugh 1992]

11

Parametric Solution of Equation
Theorem

For an equation with S we denote the set of
solutions.

• Let SH be a set of solutions of the homogeneous equality:

SH = { y | }

SH is an “almost linear” set, i.e. can be represented as a
linear combination of vectors:

SH = λ1s1 + ... λn-1sn-1

 Let w be any solution of the original equation

  S = w + λ1s1 + ... λn-1sn-1 + preconditions: gcd(i)| C

0
1




Cx
n

i

ii

0
1




n

i

iiy

12

Example

13

h * 3600 + m * 60 + s = totalSeconds

}0 s 60m 3600h |),,{(
1

 


n

i

H smhS

}|

60

1

0

3600

0

1

{ , Z

s

m

h


























































Any solution of h * 3600 + m * 60 + s = totalSeconds

(h, m, s) = (0, 0, totalSeconds)

Example

h * 3600 + m * 60 + s = totalSeconds

Z

dstotalSecons

m

h









































































 ,|0

0

60

1

0

3600

0

1

Solution of a Homogenous Equation
Theorem

For an equation with SH we denote the set of
solutions.

where values Kij are computed as follows:

 if i < j, Kij = 0 (the matrix K is lower triangular)

 if i =j

 for remaining Kij values, find any solution of the equation

0
1




n

i

iiy

}|{

)1(

)1(1

1

1

11

1 Z

K

K

K

K

S i

nn

n

n

n

H 







































  

))gcd((

))gcd((1

jkk

jkk
jjK










0
1

 


n

ji

ijijjj zK 
15

Example

16

3600 h + 60 m + s = 0

}0 s 60m 3600h |),,{(
1

 


n

i

H smhS

}|

?

1

0

?

?

1

{ , Z

s

m

h






















































Any solution of 1 * 3600 + m * 60 + s = 0

(h, m, s) = (1, 0, -3600)

Example

17

3600 h + 60 m + s = 0

}0 s 60m 3600h |),,{(
1

 


n

i

H smhS

}|

?

1

0

3600

0

1

{ , Z

s

m

h
























































Any solution of 0 * 3600 + 1 * 60 + s = 0

(h, m, s) = (0, 1, - 60)

Example

3600 h + 60 m + s = 0

}0 s 60m 3600h |),,{(
1

 


n

i

H smhS

}|

60

1

0

3600

0

1

{ , Z

s

m

h


























































Finding any Solution (n variables)
 Inductive approach

 1x1 + 2x2 +... + nxn = C

1x1 + gcd(2,...,n)[λ2x2 +... + λnxn] = C

1x1 +  xF = C

 find values for x1 (w1) and xF (wF) and then solve
inductively:

λ2x2 +... + λnxn = wF

19

Example

s + h * 3600 + m * 60 = totalSeconds

s + 60 *(60h + m) = totalSeconds

s + 60 * x = totalSeconds

(s, x) = (totalSeconds, 0)

60h + m = 0

Finding any Solution (2 variables)

 based on Extended Euclidean Algorithm (EEA)

 for every two integers n and m finds numbers p and q
such that n*p + m*q = gcd(n, m)

 problem: 1x1 + 2x2 = C

 solution:

 apply EEA to compute p and q such that

1p + 2q = gcd(1, 2)

 solution: x1 = p*C/ gcd(1, 2)

x2 = q*C/ gcd(1, 2)

21

Example

12 x + 8 y = a

12 *1 + 8 *(-1) = 4

3 *1 + 2 *(-1) = 1

3a + (-2)a = a

12 * (a / 4) + 8 (-a / 4) = a

Synthesis Procedure by Example

• process every equality: take an equality Ei, compute a
parametric description of the solution set and insert
those values in the rest of the formula

23

Z

dstotalSecons

m

h









































































 ,|0

0

60

1

0

3600

0

1

Code:
<further code will come here>
val h = lambda
val m = mu
val val s = totalSeconds + (-3600) * lambda + (-60) * mu

Synthesis Procedure by Example

• process every equality: take an equality Ei, compute a
parametric description of the solution set and insert
those values in the rest of the formula

24

Z

dstotalSecons

m

h









































































 ,|0

0

60

1

0

3600

0

1

Resulting formula (new specifications):

0 ≤ λ, 0 ≤ μ, μ ≤ 59, 0 ≤ totalSeconds – 3600λ - 60μ,
totalSeconds – 3600λ - 60μ ≤ 59

Processing Inequalities

expressing constraints as bounds on μ

process output variables one by one

0 ≤ λ, 0 ≤ μ, μ ≤ 59, 0 ≤ totalSeconds – 3600λ - 60μ,
totalSeconds – 3600λ - 60μ ≤ 59

0 ≤ λ, 0 ≤ μ, μ ≤ 59, μ ≤ ⌊(totalSeconds – 3600λ)/60⌋ ,
⌈(totalSeconds – 3600λ – 59)/60⌉ ≤ μ

Code:

val mu = min(59, (totalSeconds -3600* lambda) div 60)
25

Fourier-Motzkin-Style Elimination

combine each lower and upper bound

basic simplifications Code:

val lambda = totalSeconds div 3600

Preconditions: 0 ≤ totalSeconds

0 ≤ λ, 0 ≤ μ, μ ≤ 59, μ ≤ ⌊(totalSeconds – 3600λ)/60⌋ ,
⌈(totalSeconds – 3600λ – 59)/60⌉ ≤ μ

0 ≤ λ, 0 ≤ 59, 0 ≤ ⌊(totalSeconds – 3600λ)/60⌋ ,
⌈(totalSeconds – 3600λ – 59)/60⌉ ≤ ⌊(totalSeconds – 3600λ)/60⌋ ,
⌈(totalSeconds – 3600λ – 59)/60⌉ ≤ 59

0 ≤ λ, 60λ ≤ ⌊totalSeconds /60⌋,
⌈(totalSeconds –59)/60⌉ – 59 ≤ 60λ

26

From Data Structures to Numbers

 Observation:

 Reasoning about collections reduces to reasoning about
linear integer arithmetic!

27

a.size == b.size && a union b == bigSet && a intersect b == empty

a
b

bigSet

From Data Structures to Numbers

 Observation:

 Reasoning about collections reduces to reasoning about
linear integer arithmetic!

28

a.size == b.size && a union b == bigSet && a intersect b == empty

a
b

bigSet

From Data Structures to Numbers

 Observation:

 Reasoning about collections reduces to reasoning about
linear integer arithmetic!

29

a.size == b.size && a union b == bigSet && a intersect b == empty

a
b

bigSet

From Data Structures to Numbers

 Observation:

 Reasoning about collections reduces to reasoning about
linear integer arithmetic!

30

a.size == b.size && a union b == bigSet && a intersect b == empty

a
b

bigSet

New specification:

kA = kB && kA +kB = |bigSet|

From Data Structures to Numbers

 Observation:

 Reasoning about collections reduces to reasoning about
linear integer arithmetic!

31

a.size == b.size && a union b == bigSet && a intersect b == empty

a
b

bigSet

New specification:

kA = kB && kA +kB = |bigSet|

because of quantifier elimination

Summary: Comfusy
 Complete Functional Synthesis: extending

decision procedures into synthesis algorithms

 A different synthesis procedure for a logic in which
specification is given

 Completeness and correctness guarantees

 Writing complete specification can be a task harder than
writing code

32

Applications of
Synthesis
CODE COMPLETION, CODE CORRECTION

33

def main(args:Array[String]) = {

var body:String = "email.txt"

var sig:String = "signature.txt"

var inStream:SeqInStr =

…

}

Example: Sequence of Streams

34

def main(args:Array[String]) = {

var body:String = "email.txt"

var sig:String = "signature.txt"

var inStream:SeqInStr =

…

}

Example: Sequence of Streams

new SeqInStr(new FileInStr(sig), new FileInStr(sig))

new SeqInStr(new FileInStr(sig), new FileInStr(body))

new SeqInStr(new FileInStr(body), new FileInStr(sig))

new SeqInStr(new FileInStr(body), new FileInStr(body))

new SeqInStr(new FileInStr(sig), System.in)

35

def main(args:Array[String]) = {

var body:String = "email.txt"

var sig:String = "signature.txt"

var inStream:SeqInStr =

…

}

Example: Sequence of Streams

new SeqInStr(new FileInStr(sig), new FileInStr(sig))

new SeqInStr(new FileInStr(sig), new FileInStr(body))

new SeqInStr(new FileInStr(body), new FileInStr(sig))

new SeqInStr(new FileInStr(body), new FileInStr(body))

new SeqInStr(new FileInStr(sig), System.in)

36

def main(args:Array[String]) = {

var body:String = "email.txt"

var sig:String = "signature.txt"

var inStream:SeqInStr = new SeqInStr(new FileInStr(sig), new
FileInStr(body))

…

}

Example: Sequence of Streams

37

InSynth - Interactive Synthesis
of Code Snippets

 Before: software synthesis = automatically deriving code
from specifications

 InSynth – a tool for synthesis of code fragments
(snippets)
 interactive

 getting results in a short amount of time

 multiple solutions – a user needs to select

 component based
 assemble program from given components (local values, API)

 partial specification
 hard constraints – type constraints

 soft constraints - use of components “most likely” to be useful

Program point

Settings

Find:
-visible symbols
- expected types

Search
algorithm with weights

(lazy approach)

…………………………

…………………………

…………………………

…………………………

…………………………

…………………………

…………………………

…………………………

……………

Code snippets

Snippet Synthesis inside IDE

source
code

Ranking

- encode as type
constraints

- assign weights

Type Inhabitation Problem

 Given a set of types T and a set of expressions E, a type
environment is a set

 = {e1 : 1, e2 : 2, ... , en : n}

Type Inhabitation Problem
Given a type environment , a type  and some calculus,

is there are an expression e such that  ⊢ e : 

Automated Reasoning

 Comfusy – uses a model to for code extraction

 InSynth – extracts code from a proof of unsatisfiability

41

formula in
some logic

theorem prover
based on

DECISION PROCEDURES

satisfiable(model)

unsatisfiable (proof)

From Code Synthesis to Code
Repair

From Code Synthesis to Code
Repair

From Code Synthesis to Code
Repair

Winston – Repair tool

 Based on type constraints

 A new data structure: synthesis graph, used to encode
those constraints

 Edges have different weight based on the frequencies
of code snippets

 Synthesis is a repair of the empty expression

 Extremely fast: synthesis is done within a couple of
milliseconds, repair below half of the second

45

Programming by Example
 Sometimes it is harder to write a specification or even

to describe what the program should do

 A few representative examples can easy convey user’s
intentions

46

[1, 5, 2]  [1, 2, 5]
[t, i, m, i, s, o, a, r, a]  [a, a, i, i, m, o, r, s, t]

𝑠𝑜𝑟𝑡𝑒𝑑 𝑙, 𝑙′ ≡ ∀𝑖, 𝑗. 𝑖 < 𝑗 → 𝑙′ 𝑖 ≤ 𝑙′[𝑗]

Programming by Example
 Sometimes it is harder to write a specification or even

to describe what the program should do

 A few representative examples can easy convey user’s
intentions

47

[1, 5, 2]  [1, 2, 5]
[t, i, m, i, s, o, a, r, a]  [a, a, i, i, m, o, r, s, t]

𝑠𝑜𝑟𝑡𝑒𝑑 𝑙, 𝑙′ ≡ ∀𝑖, 𝑗. 𝑖 < 𝑗 → 𝑙′ 𝑖 ≤ 𝑙′ 𝑗 ∧
isPermutation(l, l’)

sed/\(^[a-zA-Z0-9]+\)\.\([a-z]+\)/\<a href\=\"\1\.\2\" \>\1\<\/a\>/g

Programming by Example
 Linkify

test.doc ==> test

 We developed a tool that automatically generates scripts
based on input/output examples

 Our tool supports other operations (besides the mapping):
reduce, filter, partition

 We needed to extend the existing algorithms to support
reasoning about counters

Live Programming Environment

Future Directions: Cooperative
Programming
 Integrating Software Synthesis with the Live

Paradigm

 Increasing Programmers Productivity

 Automating hard and complex task

 Goal: more reliable software

Conclusions

Software Synthesis

 method to obtain correct software from the given
specification

 Complete Functional Synthesis (Comfusy): extending
decision procedures into synthesis algorithms

 Software synthesis can be used in various domains: for
code completion, for code correction, for improving the
programming experience in general

52

