Building a Nature-Inspired Computer

Peter J Bentley

p.bentley@cs.ucl.ac.uk
http://www.cs.ucl.ac.uk/staff/p.bentley/



1951

This is a MAZE—-S01ving machine tnat is capavie o SOlVing a
maze by trial-and-error means, of remembering the solution, and also of

forgettlng it in case the situation changes and the solution is no longer
applicable.

.Now I would like to show you one further feature of the machine. I will change the maze so
that the solution the machine found no longer works. By moving the partitions in a suitable
way, I can obtain a rather interesting effect. In the previous maze the proper solution
starting from Square A led to Square B, then to C, and on to the goal. By changing the
partitions I have forced the machine at Square C to go to a new square, Square D, and from
there back to the original square, A. When it arrives at A, it remembers that the old
solution said to go to B and so it goes around the circle A, B, ¢, D, A, B, C, D ... It has
established a vicious circle, or a singing condition.

A heurosis

- Yes
- It can't do that when its mind is blank, but can do it after it has been conditioned?
- Yes, only after it has been conditioned. However, the machine has an

antineurOtiC Circu:i.t built in to proven just this sort of solution

n "
-It doesn't have any way to recognise that it is I?ES}[(:I]() it just recognizes that it
has been going too long?
-Yes. As you see, it has now gone back to the exploring strategy.
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1950

I believe that at the end of the century the use of words and general educated opinion will

M%ahawsomthtone Will be able tO Speak Of
machines thinking without expecting to be
contradicted.

I believe further that no useful purpose is served by concealing these beliefs.

The popular view that scientists proceed inexorably from well- established fact to well-
established fact, never being influenced by any unproved conjecture, is quite mistaken.

Provided it is made clear which are proved facts and which are conjectures, no harm can
result. Conjectures are of great importance since they suggest useful lines of research.
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In analyzing the functioning of the contemplated device, certain classificatory distinctions
suggest themselves immediately.

First: Since the device is primarily a computer, it will have to perform the elementary
operations of arithmetics most frequently. These are addition, multiplication and division.

It is therefore reasonable that it should contain SpeCialized Organs for

just these operations... a central arithmetic part of the device will probably have to exist
and this constitutes the first specific part: CA.

Second: The logical control of the device, that is the proper sequencing of its operations

can be most efficiently carried out by a Central COI‘ltrOl Organ this

constitutes the second specific part: CC.
Third: Any device which is to carry out long and complicated sequences of operations

(specifically of calculations) must have a considerable Iﬂf&Iﬂ()I?}f... this constitutes the
third specific part: M.

...The three specific parts CA, CC and M correspond to the as SOClatlve

neurons 1n the human nervous system.

It remains to discuss the equivalents of the S€NSOYry Or afferent and
the motor or efferent neurons.

mhese are the LNPUL and the output organs of the device.
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Deterministic
Synchronous
Serial
Heterostatic
Batch

Brittle

Fault intolerant
Human-reliant
Limited
Centralised
Precise
|solated

Linear Causality

Conventional vs Natural Computation

Stochastic
Asynchronous
Parallel
Homeostatic
Continuous
Robust

Fault tolerant
Autonomous
Open-ended
Distributed
Approximate
Embodied
Circular Causality



How to build a Nature-Inspired Computer?



How to represent reality?

interacts with



How to represent reality?




How to represent reality?




How to represent reality?

Graph, with index & pointer to represent potential future relationships?



How to represent reality?

Pattern matching to discover new relationships?



Systemic Computation =

* Everything is a system
e Systems may comprise or share other nested systems.

e Systems can be transformed but never destroyed or created
from nothing

* Interaction between systems may cause transformation of
those systems, where the nature of that transformation is
determined by a contextual system.

* All systems can potentially act as context and affect the
interactions of other systems, and all systems can potentially
interact in some context.

* The transformation of systems is constrained by the scope of
systems.

e Computation is transformation
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schemata code table

Code value code value
0 000 n 11?
! 000 o) 1?0
a 001 p 11
b 00? q 122
C 010 r 2?00
d 011 s 201
e 01? t ?07?
f 070 u ?10
d 0?1 v 211
h 0?? w 247
i 100 X ??0
j 101 y 221
k 10? v 4 ?2??
I 110 1 11
m 111
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transformation function table

bits Meaning

0..6 function identifier

719 schemata 1 matching threshold
11..14 schemata 2 matching threshold
15 NOT

scope table

System 1 2 3 4

1 0 0 0 0
2 0 0 0.5 0
3 1 0 0 0
4 1 0 0 0

Where ? means “don’t care”.




(a) A Data System
[ Data System Template 1—————| | Data System Template 2
O}O‘Ob 16 elements/effective bits 32 zero bits . 16 elements/effective bits
transformation function
H_J
4bits per
element
(b) A Context System
||= System 1 Template =|| |'= System 2 Template ='|
16 bits 32 bits 16 bits 32 bits 16 bits 32 bits 16 bits

schemata1 transformation function schemata?2 context function schemata1 transformation function schemata2
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Fig. 5. Systemic computation calculation of PRINT((A1-A2)*(A3-A4)). The initial systems
prior to calculation (A). Systems transformed by subtract-escape function ‘-e’ (executed
fragments shown in bold): PRINT((A1-A2)*(A3-A4)) (B). Systems transformed by multiply
function, prior to activation of PRINT function: PRINT((A1-A2)*(A3-A4)) (C). The same
calculation can b§e performed in different ways, for example, a more compact, functionally
equivalent arrangement of systems, sharing the subtract-escape function (D).



binding model H + Cl <--> HCI e

Molecular model of HCI (Hydrogen Chloride)



binding model H + C/ <--> HCI =

}O ()

Ishavre(e) < e 2share(e) <

H() = new e@10.0 ('share(e); H_Bound(e))
H_Bound(e) = 'e; H()

Cl() = ?share(e); Cl|_Bound(e)
Cl_Bound(e) = ?e; Cl()




binding model H + C/ <--> HCI

5 (R
CONNOENO

H }-energys-{ Cl --> (H()CI)
H(CI) }}-energyr. --> H CI
CI(H) }}-energys; -->HCI



PROBLEM &

How to build a parallel, stochastic, distributed
computer that runs quickly?

Solution 1: Simulation.
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// zyxtenic computation <

de autogenerated by
axxenbler tron /Userx/Peter /Ny

progranx/ mpilexcd/bulldi/calculationl.xc

/{ nunber of functionx
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td255)
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output
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Fig. 6. Assembly language for systemic computer. system definitions take the form: “raxtual-
identifier (| schemata 1) transformation-function | schemata 2])" (left). Cmcsp(mding

compiled machine code (night)
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PROBLEM &

How to build a parallel, stochastic, distributed
computer that runs quickly?

Solution 1: Simulation.
Good proof of concept, but slow!

Solution 2: Novel hardware.



FPGA SC —speed up key bottlenecks =

All Systems
Stable?

Hardware
Reset .
/ Get Valid Select Valid
Initialization Triplet Scope

St I N
Load I Trig.r; [Select Context in Scope Context Found?
Program
Y
I Transform I
N
(Compare Schemata 1
Write v

Result

' N
- N \ [Compare Schemata 2
(
| CPU Access |
\ \_ ) \ Y

HAoS Program Control Flow : HAoS enters an infinite computation loop after

Compute
Infinite
Loop

the SC program is loaded, which involves finding valid triplets and transforming the
selected systems



FPGA SC =

I CONF/DATA REGS

| [
| [
: [

|
| 1 7S 75|
| [
' FPGA CONTROL f U} [ .
| FSM PROCESSING I
' I
' |
| I
' I
| |
| |
| |
' |
: |

|
| |
| |

UNITS
CONF/DATA . CONF/DATA
REGS - >| REGS
W/ R4 ﬁ

— I
CPU }/‘
|INTERFACE j REG BANK

The SC FPGA Hardware Architecture.

CORE contains optimized logic for parallel schemata matching and memory elements.
CU handles execution sequence of SC program and communication with optional CPU.
REG BANK provides control and debug interface between CPU and local registers of
SC sub-modules.

FU provides basic local processing functionality. A set of simple instructions is supported
to avoid expensive data transfers between the REG BANK and the CPU.



FPGA SC

TCAM

SYSTEM STATUS REGS

| ISDATA

1

O—0Oor

| ISCONTEXT
| ISADAPTER

==

SCOPETABLE

[
Uy

SCHA >

RANDOM SELECTION LOGIC

MASK SCH2 @> COUNTONES

M
SCOPES > v U

CONTEXTS >
DIVIDER

SYSTEMS |

I

IN SCOPE

INVALID

CONTEXTS

IN SCOPE

SCOPES
OFSYSTEMI__l/

IRVIRY

O—oOO0or

-

LFSR

|

BITPOSSEL

L

BINARY
RAM

B

TERNARY
RAM

VALID
SCOPES

O—0O0r

SCOPES
WITH
CONTEXTS

CONF/DATA
REGISTERS

HAoS Core basic building blocks



FPGA SC =

Post-Compiler
Compiler Binary Generator Compact Flash

SC source (.sc) —» :;Qrt:‘rglin(.rsecaptjable > HAoS Binary (.scb) /> Card

Conventional Computer

/\

1T SW Update &
Debug I/0
N
User
: : Compact Flash

DDR f Code MicroBlaze <:> HAoS Card
Memory 0

Driver Apl

FPGA

Development Board

. HAoS programming toolchain and software framework illustrating the complete
suggested programming platform
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Knapsack problem using genetic algorithm

Non-
Initialized

Solution

One-Point Binary
Crossover Mutation

Computation

Initialized

Initialized
Solution

Initialized
Solution

Initialized Solution

Solution

Fittest
Solution

The binary knapsack SC model. Non-initialized solutions are initialized by the
initializer context and added into the computation scope where they are transformed
through genetic operations. The output context updates, if necessary, the fittest solution.



MAPK phosphorylation

Phosphorylation Steps:
A—-B—-C—-D—E

Dephosphorylation Steps:
E-D-C—B—-A

The HAoS MAPK model in SC graphical notation. During phosphorylation, E1
mitogens activate KKKs, which become KKK*s and phosphorylate KKs, which, when
double phosphorylated, become KKPPs and phosphorylate Ks. This process is reversed
during dephosphorylation with KPase and KKPase phosphatases and E2 mitogens bringing

the cascade to its initial state.



Cancer development model =

......................................................................................

Cell Cell :
Death . ' Division:
Chain Tissue Chain

Nutrient :
Cell :
Living :
Cell ¢
Living '

l% Cell '

.....................................................................................

Optimized SC cancer model. The surgery functionality is embedded in the
death context while the contexts implementing the two main genetic operations, death and
division, are chained



PROBLEM &

How to build a parallel, stochastic, distributed
computer that runs quickly?

Solution 1: Simulation.
Good proof of concept, but slow!

Solution 2: Novel hardware.
Much faster, but limited!

Solution 3: Use existing parallel architectures.



Multicore CPU and GPU architectures

CPU

GPU
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no

THREAD 1
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* Random cycle algorithm &

12 32 12 34 44 12 44 (01 11

Randomly pick a value from the list and repeat without
choosing the same value, until all have been chosen.

randomcycle (a, range)

a = (a + BIGPRIME) % (range)

06



Performance comparison

Genetic Algorithm Optimization of Binary Knapsack

In the knapsack problem there are n objects with value v; > 0 and weight
w; > 0. We want to find a set of objects with maximum total weight that fits
into a knapsack with capacity C. Thus, we wish to maximize:

Evixi where Ewixi <C and x, € {0,1}
=1

i=1

Here, we use a Genetic Algorithm in SC. There are three different
solutions: uninitialized solutions, initialized solutions, and final solutions.
The chromosome size equals the schema size (16 in this
implementation). So, this program supports a knapsack with 16 objects.



SC GA knapsack program =

main

non-
initialiser initialised
solutions

Schemal Context Schema?
Solution: | 0000..........0 || 0000........ 0 XY000........0
Chromosome

final O

solution

Left: The Solution system S. Schema1 stores the chromosome. XY in
Schema2 specifies solution type (00: non initialized, 11: final solution).
Right: the systemic program (not all non-initialised solutions an GA

systems shown).



CPU Intel® dual core™, 2.40 GHz

RAM 2 GB

0S Microsoft Windows XP professional 2002 SP1
Name : GeForce 9800 GT
CUDA: 1.1

GPU Size of Global memory: 1 GB
Multiprocessors 14
Number of cores: 112
Clock Rate: 1.62 GHz

* Number of knapsack objects is 16; the maximum knapsack’s weight is 80.0 kg.

« Context systems: 3 GA systems and 1 output system

« Solution systems: 50 to 4000 systems for sequential implementation and 50 to
8000 systems for parallel implementation (each increment is double the

previous increment except 800 to 1000 with an increment of 200)

* Final Solution system: 1 system

» Scope: 1 main scope and 1 computation scope




Performance comparison (speed)

time(ms)
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Top: Execution time of knapsack problem on both sequential and parallel

implementation with increasing number of systems. Bottom left: execution time of
parallel implementation alone. Bottom right: improvement as shown by sequential
divided by parallel execution times for different numbers of systems in the program.



Performance comparison (speed)
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What else could we use?

m{1d MATCH p = (:Category)<——-(:Place)-[*]->(:Terminal {name:'A'}) RETURN p

lcebox
IN_CATEGORY Cafe
N cay
~TEGory =
‘ Gate ¥ % = Red
' Place

Yogurt

. Category rf::d

WAL R e
g
g

&
@/
\s.‘.‘a‘mﬂ»
Ta
Q@ IN_TERMING L
4
~Garg et M e T ERu
45“*\?' R T
m
S A I R AN
~ %,
E=2 ; %% % /"fg(
* 3
z %
L o
cﬂ]’%oqr
East
Side
Mario's
4
Ry Ta
G 73
IN_CATEGORY L oHE
s 5
d ch/U}
IN_CATEGORY

Graph languages? (akin to Semantic Web)



What else could we use?
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Memristor or neuromorphic chips?



What else could we use?

Something new?



Conclusions

« The future of computing, as predicted by von Neumann, will be parallel
and distributed.

« Perhaps by learning lessons from nature we will be able to achieve
this future with the efficiency and reliability of a living system.

« Biology and conventional technology are designed differently and may
work very differently to each other.

» |f we could learn to combine the advantages of existing technologies
with those of natural systems, our capabilities would be transformed.



Conclusions

Systemic computation is our solution. It is:
— A model of computation
— A common language for computer science and natural systems
— A computer architecture

It's possible to simulate the systemic computer, develop custom
hardware, or use the latest parallel hardware solutions.

The most practical and scalable solution today is to use the latest
parallel hardware.

We anticipate that the hardware of tomorrow will be even more
suitable.



Thank You.

http://www.cs.ucl.ac.uk/staff/p.bentley/
http://www.peterjbentley.com/



