
Building a Nature-Inspired Computer

Peter J Bentley
p.bentley@cs.ucl.ac.uk
http://www.cs.ucl.ac.uk/staff/p.bentley/

This is a maze-solving machine that is capable of solving a
maze by trial-and-error means, of remembering the solution, and also of

forgetting it in case the situation changes and the solution is no longer
applicable.

…Now I would like to show you one further feature of the machine. I will change the maze so
that the solution the machine found no longer works. By moving the partitions in a suitable
way, I can obtain a rather interesting effect. In the previous maze the proper solution
starting from Square A led to Square B, then to C, and on to the goal. By changing the
partitions I have forced the machine at Square C to go to a new square, Square D, and from
there back to the original square, A. When it arrives at A, it remembers that the old
solution said to go to B and so it goes around the circle A, B, C, D, A, B, C, D …. It has
established a vicious circle, or a singing condition.

- A neurosis
- Yes
- It can't do that when its mind is blank, but can do it after it has been conditioned?
- Yes, only after it has been conditioned. However, the machine has an

antineurotic circuit built in to proven just this sort of solution

-It doesn't have any way to recognise that it is "psycho" it just recognizes that it
has been going too long?
-Yes. As you see, it has now gone back to the exploring strategy.

1951

Presentation
of a Maze-
Solving
Machine

Claude Shannon
1951

I believe that at the end of the century the use of words and general educated opinion will

have altered so much that one will be able to speak of
machines thinking without expecting to be
contradicted.

I believe further that no useful purpose is served by concealing these beliefs.

The popular view that scientists proceed inexorably from well- established fact to well-
established fact, never being influenced by any unproved conjecture, is quite mistaken.

Provided it is made clear which are proved facts and which are conjectures, no harm can
result. Conjectures are of great importance since they suggest useful lines of research.

1950

Computing Machinery and
Intelligence

A.  M. Turing

1950

In analyzing the functioning of the contemplated device, certain classificatory distinctions
suggest themselves immediately.

First: Since the device is primarily a computer, it will have to perform the elementary
operations of arithmetics most frequently. These are addition, multiplication and division.

It is therefore reasonable that it should contain specialized organs for
just these operations... a central arithmetic part of the device will probably have to exist
and this constitutes the first specific part: CA.

Second: The logical control of the device, that is the proper sequencing of its operations

can be most efficiently carried out by a central control organ... this
constitutes the second specific part: CC.

Third: Any device which is to carry out long and complicated sequences of operations

(specifically of calculations) must have a considerable memory... this constitutes the
third specific part: M.

...The three specific parts CA, CC and M correspond to the associative
neurons in the human nervous system.

It remains to discuss the equivalents of the sensory or afferent and
the motor or efferent neurons.

These are the input and the output organs of the device.

1945

First Draft of
a Report on
the EDVAC

John von Neumann

1945

Conventional vs Natural Computation

Conventional Natural
Deterministic Stochastic

Synchronous Asynchronous

Serial Parallel

Heterostatic Homeostatic

Batch Continuous

Brittle Robust

Fault intolerant Fault tolerant

Human-reliant Autonomous

Limited Open-ended

Centralised Distributed

Precise Approximate

Isolated Embodied

Linear Causality Circular Causality

How to build a Nature-Inspired Computer?

How to represent reality?

system 1 system 2interacts with

How to represent reality?

context

system 1 system 2interacts with

How to represent reality?

context

system 1 system 2interacts with

How to represent reality?

scope

context

system 2system 1

Graph, with index & pointer to represent potential future relationships?

How to represent reality?

context

system 2system 1

Pattern matching to discover new relationships?

•  Everything is a system
• Systems may comprise or share other nested systems.
• Systems can be transformed but never destroyed or created

from nothing
• Interaction between systems may cause transformation of

those systems, where the nature of that transformation is
determined by a contextual system.

• All systems can potentially act as context and affect the
interactions of other systems, and all systems can potentially
interact in some context.

•  The transformation of systems is constrained by the scope of
systems.

•  Computation is transformation

Systemic Computation

binding model H + Cl <--> HCl

binding model H + Cl <--> HCl

binding model H + Cl <--> HCl

PROBLEM

How to build a parallel, stochastic, distributed
computer that runs quickly?

Solution 1: Simulation.

Visualising fire

MAPK phosphorylation model

Bi stable gene network

Model of Organism

PROBLEM

How to build a parallel, stochastic, distributed
computer that runs quickly?

Solution 1: Simulation.

 Good proof of concept, but slow!

Solution 2: Novel hardware.

FPGA SC –speed up key bottlenecks

FPGA SC

The SC FPGA Hardware Architecture.
CORE contains optimized logic for parallel schemata matching and memory elements.
CU handles execution sequence of SC program and communication with optional CPU.
REG BANK provides control and debug interface between CPU and local registers of
SC sub-modules.
FU provides basic local processing functionality. A set of simple instructions is supported
to avoid expensive data transfers between the REG BANK and the CPU.

FPGA SC

FPGA SC

FPGA SC

Knapsack problem using genetic algorithm

MAPK phosphorylation model

Cancer development model

PROBLEM

How to build a parallel, stochastic, distributed
computer that runs quickly?

Solution 1: Simulation.

 Good proof of concept, but slow!

Solution 2: Novel hardware.

 Much faster, but limited!

Solution 3: Use existing parallel architectures.

Multicore CPU and GPU architectures

GPU SC
Create Thread 2

and wait for
completion

Is triplet valid?

Get next triplet on
queue 1

Is queue 1
empty?

no

swap queue 1
and queue 2

Create thread 2

yes

no

yes

Transform triplet
according to

context

Is context
chained? yes

Get next context
and matching

systems,
transform, repeat

until chain
complete

no

Randomly pick*
next valid scope

Randomly pick a
non-zero context

Randomly pick*
systems in same
scope as context
that are not equal

to context and
store in buffer.

Use OpenCL
device 1 to make
list of all systems

matching
schemata 1 of

context

Use OpenCL
device 2 to make
list of all systems

matching
schemata 2 of

context

Use indexes of
matching

systems to add
valid triplets to

queue 2

Is queue 2 full?

no

Process ends

yes

THREAD 1 THREAD 2

Wait for Thread 2
to complete if still

running

yes

* Random cycle algorithm

randomcycle(a, range)

a = (a + BIGPRIME) % (range)

12 32 12 34 44 12 44 01 11 06

Randomly pick a value from the list and repeat without
choosing the same value, until all have been chosen.

Performance comparison

Genetic Algorithm Optimization of Binary Knapsack

In the knapsack problem there are n objects with value vi > 0 and weight
wi > 0. We want to find a set of objects with maximum total weight that fits
into a knapsack with capacity C. Thus, we wish to maximize:

Here, we use a Genetic Algorithm in SC. There are three different
solutions: uninitialized solutions, initialized solutions, and final solutions.
The chromosome size equals the schema size (16 in this
implementation). So, this program supports a knapsack with 16 objects.

SC GA knapsack program

Left: The Solution system S. Schema1 stores the chromosome. XY in
Schema2 specifies solution type (00: non initialized, 11: final solution).
Right: the systemic program (not all non-initialised solutions an GA
systems shown).

Experiments

•  Number of knapsack objects is 16; the maximum knapsack’s weight is 80.0 kg.

•  Context systems: 3 GA systems and 1 output system

•  Solution systems: 50 to 4000 systems for sequential implementation and 50 to
8000 systems for parallel implementation (each increment is double the
previous increment except 800 to 1000 with an increment of 200)

•  Final Solution system: 1 system

•  Scope: 1 main scope and 1 computation scope

Performance comparison (speed)

Top: Execution time of knapsack problem on both sequential and parallel
implementation with increasing number of systems. Bottom left: execution time of
parallel implementation alone. Bottom right: improvement as shown by sequential
divided by parallel execution times for different numbers of systems in the program.

Performance comparison (speed)

What else could we use?

Graph languages? (akin to Semantic Web)

What else could we use?

Memristor or neuromorphic chips?

What else could we use?

Something new?

?

•  The future of computing, as predicted by von Neumann, will be parallel
and distributed.

•  Perhaps by learning lessons from nature we will be able to achieve
this future with the efficiency and reliability of a living system.

•  Biology and conventional technology are designed differently and may
work very differently to each other.

•  If we could learn to combine the advantages of existing technologies

with those of natural systems, our capabilities would be transformed.

Conclusions

Conclusions

•  Systemic computation is our solution. It is:
–  A model of computation
–  A common language for computer science and natural systems
–  A computer architecture

•  It’s possible to simulate the systemic computer, develop custom
hardware, or use the latest parallel hardware solutions.

•  The most practical and scalable solution today is to use the latest
parallel hardware.

•  We anticipate that the hardware of tomorrow will be even more
suitable.

Thank You.

http://www.cs.ucl.ac.uk/staff/p.bentley/
http://www.peterjbentley.com/

