Getting Personal with Differential Privacy

David Sands

Chalmers University of Technology Sweden

Just how big are Dave's feet?

How Can We Ensure Privacy?

Anonymisation

Massachusetts Group Insurance Commission released "anonymized" health records on state employees

Photo:media.masslive.com

Anonymisation Fail

Netflix released viewer data for half a million subscribers a \$1M competition to build the best movierecommender system

NETFLIX

Home Rules Leaderboard

erboard Update

Leaderboard

Showing Test Score. Click here to show quiz score

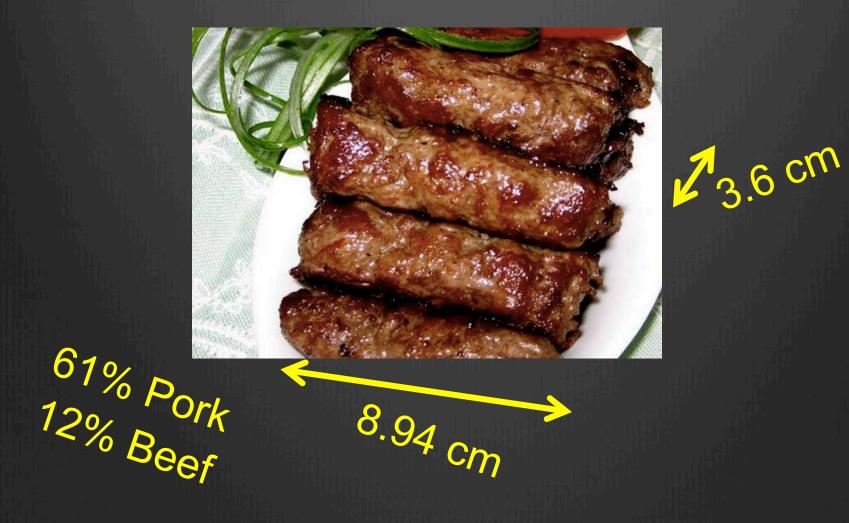
Display top 20 \$ leaders.

Rank		Team Name	B	est Test Score	<u>%</u> Improve
9	irand	l Prize - RMSE = 0.8567 - Winnii	ng Team:	BellKor's Pragn	natic Chaos
1		BellKor's Pragmatic Chaos		0.8567	10.06
2		The Ensemble	į	0.8567	10.06
3		Grand Prize Team	1	0.8582	9.90

Candidate definition of Absolute Privacy [Dalenius '77]:

Whatever you learn about an individual from a database could already have been learned without access to the database

The 1991 Romanian Mititei Survey



Does the 1991 "Mici" Survey Protect Dave's Privacy?

Dave's feet are 3x longer than the average 1991 mici

Anonymisation Cannot Guarantee Privacy

On the Difficulties of Disclosure Prevention in Statistical Databases or The Case for Differential Privacy, [Dwork & Naor 2010] Differential Privacy [Dwork & McSherry '06]

A **quantified** definition of privacy for a **noisy** statistical query:

quantify the *difference* in what might be learned about any individual from a database with or without said individual

Privacy Preserving Database Queries

- What is privacy for database queries?
 1. Introducing Differential Privacy
- How to build tools which make it easy to program data analyses while respecting privacy

2. Building-blocks for DP mechanisms

Outline of our approach:
 3. Personalised Differential Privacy

Differential Privacy

• A measure of the extent to which anyone can blend into the crowd

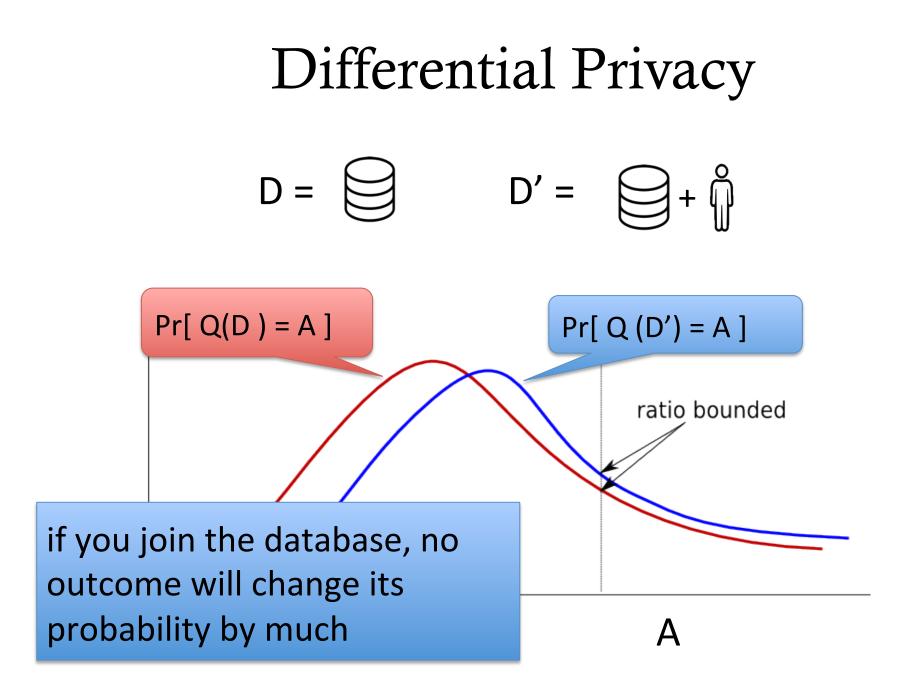
• A measure of the plausible deniability of the claim: "I'm not even in that database"

ε -Differentially Private query:

For any dataset $\textcircled{\}$ and any individual $\mathring{\}$, the chance of getting answer A on $\textcircled{\}$ the chance of getting answer A on $\textcircled{\}$ + $\mathring{\}$ differ by at most a factor of exp(ε)

ε -Differentially Private query:

For any dataset $\textcircled{\}$ and any individual $\mathring{\}$, the chance of getting answer A on $\textcircled{\}$ the chance of getting answer A on $\textcircled{\}$ + $\mathring{\}$ differ by at most a factor of $1 \pm \varepsilon$



Designing Differentially Private Mechanisms

This talk:

Intro to DP

dynamic enforcement method for DP by information flow tracking No statisctical knowledge required!

Building DP Mechanisms

Just like using LEGO (TM)!

A Reference for the Rest of Us!

Building Blocks for Differential Privacy

Compositionality principles make it easier to build differentially private mechanisms from components

Sequential Composition

An ε_1 -DP query, followed by an ε_2 -DP is ($\varepsilon_1 + \varepsilon_2$)-DP [McSherry]

Holds even if Q_2 is chosen using the result of Q_1

Sensitivity (stability)

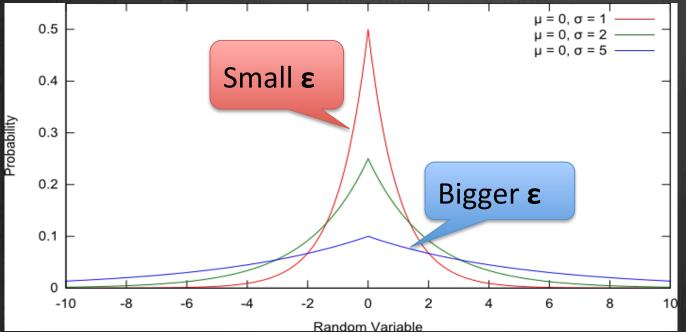
$D = \bigcirc D' = \bigcirc + i$

A function **F** has sensitivity **S** if **F(D)** and **F(D')** are different by at most (size) **S**

- count
- select males
- sum

Private Query = Query + Noise If **Q** has sensitivity **s** then we can compute an ε –differentially private version of **Q**:

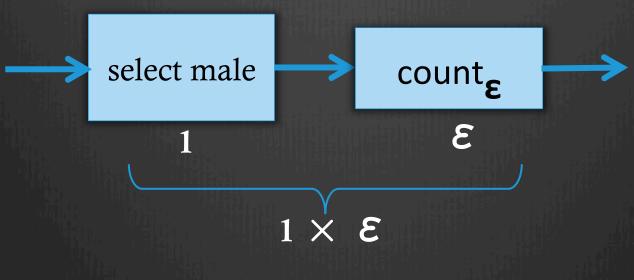
$\overline{Q_{\varepsilon}}(\mathbf{x}) = \mathbf{Q}(\mathbf{x}) + \text{Laplace}(\mathbf{s} / \varepsilon)$



Laplace distribution

Sensitivity Composition

T has sensitivity **s** and **Q** is ε -DP then $Q \circ T$ is $(s \times \varepsilon)$ -DP



PINQ [McSherry]

C# code: Transformations and Queries in a LINQ-like language

API mediating all access to database

Standard LINQ data store

PINQ [McSherry]

C# code using Transformations and Queries in a LINQ-like language

var data = new PINQueryable<SearchRecord>(....);

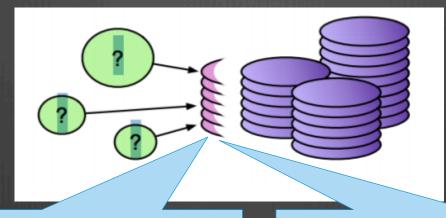
Standard LINQ

data store

var users = from record in data
 where record.Query == argv[0]
 groupby record.IPAddress;

Console.WriteLine(argv[0] + ":" + users.Count(0.1));

PINQ [McSherry]



Data

 A Global Privacy Budget

• The sensitivity of each intermediate database

Bookkeeping

- Deduct *\varepsilon* × s from budget if
 \varepsilon query is applied to a table with sensitivity s
- Deny query whenever the budget is insufficient

Problem 1: Wasteful Global Budget

MON

Detailed, multi-dimensional survey of people with blood type *ABnegative*

Budget Exhausted

Marketing study of all adults

Problem 2: Continuous Data

Detailed, multi-dimensional survey of people with blood type *ABnegative*

WED

New data input to the database

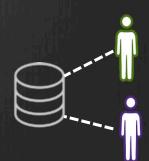
Personalised Differential Privacy (PDP)

1. Generalise DP: each individual has their own personal "epsilon"

2. Show that PDP has its own composition principles

3. Implement PDP by tracking exact *provenance* of every record

[Ebadi, DS, Schneider, POPL 2015]



0.1 0.2 0.6

Personal (Big-Epsilon) Differential Privacy

0.1 0.2 1.6

Let E be a function from individual records to $\mathbb{R}^{\geq 0}$

Query Q provides E-Differential Privacy if for all \bigotimes and all \bigotimes the chance of getting answer A on \leq VS the chance of getting answer A on \bowtie differ by at most a factor of $1 \pm \mathbf{E}(\mathbf{\hat{P}})$

PDP generalises DP

DP

$E \mapsto max (range (E))$

Personalised DP

$\varepsilon \mapsto \lambda x. \varepsilon$

If Q is E-DP then Q is ε -DP for $\varepsilon = \max(\text{range}(E))$

PDP composition principles

Sequential composition

An E_1 -DP query, followed by an E_2 -DP query is E-DP

where $E(y) = E_{1}(y) + E_{2}(y)$

PDP composition principles

Sensitivity composition

If Q is E-DP then $Q \circ F$ is E'-DP where E'(z) = sensitivity(F) × E(z)

PDP composition principles

"Computing the (noisy) average income of adult smokers is 0-differentially private for Jimmy, aged 10."
Selection: select_P removes elements not in P
Selection composition principle:

Q is E-DP then $\mathbf{Q} \circ \mathsf{select}_{P}$ is E'-DP where E'(x) = if $x \in P$ then E(x) else 0

Union-preserving functions

$\overline{F}(A \cup B) = F(A) \cup F(B)$

E.g. select, project, rename, map...

Union-preserving functions

If Q is ε -DP then Q \circ F is E-DP, where E(x) = $\varepsilon \times \text{size}(F\{x\})$

F magnifies the privacy cost of Q for Bob by |F{Bob}|

Provenance for Personalised Differential Privacy

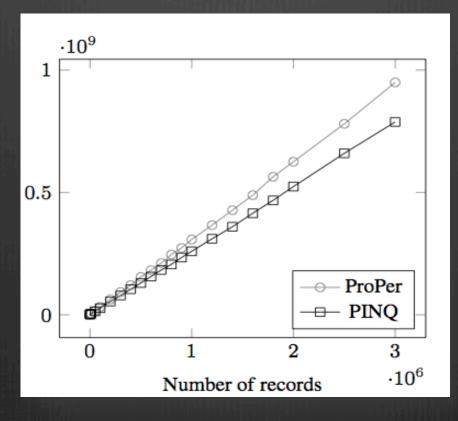
Merriam-	Dictionary	Thesaurus	Medical	Encyclo.		
Webster	provenan	се				2
m-w.com	provena	nce			Save	Popularity

prov·e·nance
noun \'präv-nən(t)s, 'prä-vənän(t)s\

: the origin or source of something

Provenance for Personalised Differential Privacy

Our implementation, ProPer, is based on (and subsumes) PINQ with small overhead



	ID	Age
1	Mary	24
1	Bob	29
1	Harry	17
	이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이	

Initial budgets associated with the original data

	ID	Age
1	Mary	24
1	Bob	29
1	Harry	17

SELECT age WHERE age ≥ 18

Transformation

	ID	Age
1	Mary	24
1	Bob	29
1	Harry	17

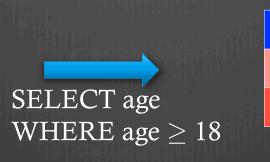
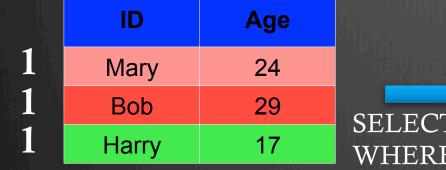


Table plus the provenance of each record

Age

24

29



 Age

 24

 29

Average($\varepsilon = 0.1$)

"Primitive" DP-query

Update budgets

The Catch

PINQ

deny the query (throw exception) OK because the budget is not private

ProPer Not OK! Budget *is* private

Solution

1. Silently drop the records from the query which would otherwise get negative budget

Not obvious that this is privacy preserving

 It isn't , in general

2. Restrict to unary union-preserving transformations (e.g. map & filter)

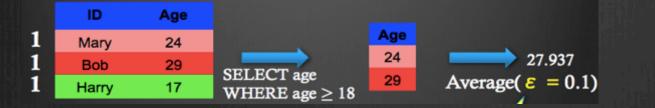
 Small change to dataset implies only small change to set of over-budget records

Conclusions

- Introduced Personalised Differential Privacy

 more fine-grained budgeting
 capable of handling interactive queries over data arriving over time
- ProPer provenance-based tracking
 - Implementation subsuming PINQ with small overhead
 - Formal model & proof of correctness (PDP)

End



Further Work

 Permissiveness: Prove more permissive than PINQ
 requires formal model of PINQ

- Utility: method degenerates to noise; analyst may be unaware
 - Track utility based on analysts prior knowledge

Related Work

- See paper
- Don't see the paper: [Xiao & Tao, SIGMOD'06] Personalised version of k-anonymity
- [Alaggan, Gambs, Kermarrec TPDP 2015] Heterogeneous differential privacy
- Jorgensen, Yu, and Cormode, ICDE 2015] Conservative or liberal? personalized differential privacy.

Related Work

Not cited in the paper: