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Turing, 1936: “undecidable’
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Turin g, 1949 Alan M. Turing. “Checking a large routine”, 1949

How can one check a routine in the sense of making sure that it is right?

programaar should make a number of definite assertions which dun bu_c:hc;-;:_kud
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follows,
v=n!
|
r=n r=n STOP sS=r<n s=r<n
u=r! u=rl >0 u = sr! u=(s+ 1y!
0<n ] v=r! S v=rl v=r!
| [ ! I I
: r.=1 : : : '
L e — i | o
: . B 4\'xv—u il = s=1f(—u=u+v W S:=5+1
{DA
(s=1)—r >e—
I
|
Lk >0 s-1sr<n

© 2015 Carnegie Mellon University



Three-Layers of a Program Verifier

Compiler
« compiles surface syntax a target machine
» embodies syntax with semantics

Verification Condition Generator

o transforms a program and a property to a verification
condition in logic

« employs different abstractions, refinements, proof-search strategies, etc.

Automated Theorem Prover / Reasoning Engine
 discharges verification conditions
* general purpose constraint solver
o SAT, SMT, Abstract Interpreter, Temporal Logic Model Checker,...

Verification with SeaHorn
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SeaHorn | A Verification Fr %

<« C f seahorn.github.io =
' Apps w Getting Started Google Bookmark MNote in Reader Add to Wish List + Pocket Google Bookmark ®» | Other Bookmarks
)
SeaHorn - N
Home About Download Publications People

%

A fully automated verification framewaork for LLVM-based
languages.

http://seahorn.github.1o0

- Verification with SeaHorn
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SeaHorn Verification Framework
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The Plan

Introduction
Architecture and Usage
Demonstration
Constrained Horn Clauses as an Intermediate Representation
From Programs to Logic
e generating verification conditions
Program Transformations for Verification
Solving Constrained Horn Clauses
» synthesizing inductive invariants and procedure summaries

Conclusion

- Verification with SeaHorn
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SeaHorn Verification Framework

LLVM bitcode

Legacy fl Encoding = {Small, | SPACER X CEX
Large}

Front-End

Inter Precision = {Register, [ Z3-PDR J:D or
procedural Pointer, V
Memorys} CRAB

Front End Middle End Back End
Key Features

o LLVM front-end(s)
» Constrained Horn Clauses to represent Verification Conditions
 Comparable to state-of-the-art tools at SV-COMP’15
Goals
* be a state-of-the-art Software Model Checker
* be a framework for experimenting and developing CHC-based verification

- Verification with SeaHorn
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Related Tools

CPAChecker
e Custom front-end for C
» Abstract Interpretation-inspired verification engine
» Predicate abstraction, invariant generation, BMC, k-induction

SMACK / Corral
e LLVM-based front-end
* Reduces C verification to Boogie
« Corral / Q verification back-end based on Bounded Model Checking with SMT

UFO
* LLVM-based front-end (partially reused in SeaHorn)
« Combines Abstract Interpretation with Interpolation-Based Model Checking
 (no longer actively developed)

Verification with SeaHorn

=== Software Engineering Institute ﬂ Carnegie Mellon University =~ Gurfinkel, 2015

© 2015 Carnegie Mellon University




SeaHorn Philosophy

Build a state-of-the-art Software Model Checker
 useful to “average” users
— user-friendly, efficient, trusted, certificate-producing, ...
 useful to researchers in verification
— modular design, clean separation between syntax, semantics, and logic, ...
Stand on the shoulders of giants
 reuse techniques from compiler community to reduce verification effort
— SSA, loop restructuring, induction variables, alias analysis, ...
— static analysis and abstract interpretation
 reduce verification to logic
— verification condition generation
— Constrained Horn Clauses
Build reusable logic-based verification technology
« “SMT-LIB” for program verification

- Verification with SeaHorn
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SeaHorn Usage

> sea pf FILE.c
Outputs sat for unsafe (has counterexample); unsat for safe

Additional options

e --cex=trace.xml outputs a counter-example in SV-COMP’15 format
--show-invars displays computed invariants
--track={reg, ptr,mem} track registers, pointers, memory content
--step={large,small} verification condition step-semantics

— small == basic block, large == loop-free control flow block

e --inline Inline all functions in the front-end passes
Additional commands

* sea smt — generates CHC in extension of SMT-LIB2 format

 sea clp -- generates CHC in CLP format (under development)

 sea 1lfe-smt — generates CHC in SMT-LIB2 format using legacy front-end

Verification with SeaHorn
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Verification Pipeline

front-end

A
4 \

clang | ms |opt | horn

compile pre-process optimize
mixed VC gen &
semantics solve

- Verification with SeaHorn
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DEMO

o Verification with SeaHorn
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From Programming to Modeling

Extend C programming language with 3 modeling features

Assertions
» assert(e) — aborts an execution when e is false, no-op otherwise

void assert (_Bool b) { if (!b) abort(); }

Non-determinism
e nondet_int() — returns a non-deterministic integer value

int nondet_int () { int x; return x; }

Assumptions
e assume(e) — “ignores” execution when e is false, no-op otherwise

void assume (_Bool e) { while (!e) ; }

Verification with SeaHorn
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Constrained Horn Clauses

INTERMEDIATE
REPRESENTATION

- Verification with SeaHorn

=== Software Engineering Institute | Carnegie Mellon University = Gurfinkel, 2015

© 2015 Carnegie Mellon University



Constrained Horn Clauses (CHC)

A Constrained Horn Clause (CHC) is a FOL
formula of the form

8V . (A &£ pX]£... /- p,[X.]— h[X]),
where

* A Is a background theory (e.g., Linear Arithmetic, Arrays,
Bit-Vectors, or combinations of the above)

e A is a constrained in the background theory A
* Py, ..., Py h are n-ary predicates
* p[X] Is an application of a predicate to first-order terms

- Verification with SeaHorn
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Example Horn Encoding

o (1) po-
r =1 <2> pl(aj7y> —
y=0 po,x =1,y =0.
int z = 1; | (3) p2(w,y) < p1(z,y) .
int y = 0; l; : by = nondet() F <4> p3(£lf,y) N pl(az,y) ‘
while (%) { (5) p1(2,y")
T
r=x+Y; p2(x,y),
y:y—|—17 |5 - I ZC/:33+y,

Perr < (SU < y)7 p3(fl3,y)

assert(s > y); LY N (O @2yl
(7)
(8)
(9)

- Verification with SeaHorn
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CHC Terminology m &({]Stram}

Rule h[X] A D, [X s, p[X ], A

Query false A p,[X4],..., P.[X.], A.

Fact h[X] A A.

Linear CHC h[X] A p[X,], A.

Non-Linear CHC h[X] A py[Xy],..., palX], A.
forn>1

- Verification with SeaHorn
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CHC Satisfiability

A model of a set of clauses | is an interpretation of each predicate p, that
makes all clauses in | valid

A set of clauses is satisfiable if it has a model, and is unsatisfiable
otherwise

A model is A-definable, it each p; is definable by a formula A, in A

Verification with SeaHorn
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Example Horn Encoding

o (1) po-
r =1 <2> pl(aj7y> —
y=0 po,x =1,y =0.
int z = 1; | (3) p2(w,y) < p1(z,y) .
int y = 0; l; : by = nondet() F <4> p3(£lf,y) N pl(az,y) ‘
while (%) { (5) p1(2,y")
T
r=x+Y; p2(x,y),
y:y—|—17 |5 - I ZC/:33+y,

Perr < (SU < y)7 p3(fl3,y)

assert(s > y); LY N (O @2yl
(7)
(8)
(9)

- Verification with SeaHorn
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Relationship between CHC and Verification

A program satisfies a property iff corresponding CHCs are satisfiable
o satisfiability-preserving transformations == safety preserving

Models for CHC correspond to verification certificates
« inductive invariants and procedure summaries

Unsatisfiability (or derivation of FALSE) corresponds to counterexample
* the resolution derivation (a path or a tree) is the counterexample

CAVEAT: In SeaHorn the terminology is reversed

« SAT means there exists a counterexample — a BMC at some depth is SAT
« UNSAT means the program is safe — BMC at all depths are UNSAT

- Verification with SeaHorn
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FROM PROGRAMS TO
CLAUSES

- Verification with SeaHorn
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Hoare Triples

A Hoare triple {Pre} P {Post} is valid iff every terminating execution of P
that starts in a state that satisfies Pre ends in a state that satisfies Post

Inductive Loop Invariant
Pre) Inv {Inv/EC} Body {Inv} InvAE:.C ) Post

{Pre} while C do Body {Post}

Function Application
(Pre/Ep=a) ) P {P} Body{Q} (QAp,r=a,b) ) Post
{Pre} b = F(a) {Post}

Recursion
{Pre} b = F(a) {Post} " {Pre} Body. {Post}
{Pre} b = F(a) {Post}

- Verification with SeaHorn
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Weakest Liberal Pre-Condition

Validity of Hoare triples is reduced to FOL validity by applying a
predicate transformer

Dijkstra’s weakest liberal pre-condition calculus [Dijkstra’75]

wlp (P, Post)

weakest pre-condition ensuring that executing P ends in Post

[ {Pre} P {Post} is valid : Pre ) wlp (P, Post) J

- Verification with SeaHorn

=== Software Engineering Institute ﬂ Carnegie Mellon University =~ Gurfinkel, 2015

© 2015 Carnegie Mellon University




A Simple Programming Language
Prog ::= def Main(x) { body, }, .., def P (x) { body, }
body ::= stmt (; stmt)*
stmt ::= x = E | assert (E) | assume (E) |
while Edo S | y = P(E) |

L:stmt | goto L (optional)

E := expression over program variables

- Verification with SeaHorn
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Horn Clauses by Weakest Liberal Precondition

Prog ::= def Main(x) { body, }, .., def P (x) { body, }

wip (x=E, Q) =let x=E in Q
wip (assert(E) , Q) =E A Q
wilp (assume(E), Q) =E > Q
wilp (while E do S, Q) =1I(w) A
8w . ((I(w) £ E) > wlip (S, I(w))) £ ((I(w) £ :E) > Q))
wip (y = P(E), Q) = ppe(E) £ (8 1. p(E, 1) — Q[rly])

ToHorn (def P(x) {S})=wlp (x@=x;assume(p,..(x)); S, p(x0, ret))
ToHorn (Prog) = wilp (Main(), true) £ 8{P 2 Prog} . ToHorn (P)

Verification with SeaHorn
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Example of a WLP Horn Encoding

{Pre: y, 0}
X, = X;

Yo = Y5
while y > 0 do ToHorn
X = X+1;

y = y-1;
{Post: x=X_+Y,}

Cl: I(x,y,x,y) Ay.0.
C2: I(x+1,Y-1,%,5Y,) A I(X,Y,X%55Y,)s ¥>O.
C3: false A I(X,y,X,,Y.), Y0, X&X Y,

{y , 0} P {x = X 4tYoq} iS true iff the query C, is satisfiable

Verification with SeaHorn
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Example Horn Encoding

o (1) po-
r =1 <2> pl(aj7y> —
y=0 po,x =1,y =0.
int z = 1; | (3) p2(w,y) < p1(z,y) .
int y = 0; l; : by = nondet() F <4> p3(£lf,y) N pl(az,y) ‘
while (%) { (5) p1(2,y")
T
r=x+Y; p2(x,y),
y:y—|—17 |5 - I ZC/:33+y,

Perr < (SU < y)7 p3(fl3,y)

assert(s > y); LY N (O @2yl
(7)
(8)
(9)

- Verification with SeaHorn
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From CFG to Cut Point Graph

A Cut Point Graph hides (summarizes) fragments of a control flow graph
by (summary) edges

Vertices (called, cut points) correspond to some basic blocks

An edge between cut-points ¢ and d summarizes all finite (loop-free)
executions from c to d that do not pass through any other cut-points

- Verification with SeaHorn
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Cut Point Graph Example

CFG CPG

(U
5 Y

) @ g
O
O

- Verification with SeaHorn
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Mixed Semantics

PROGRAM TRANSFORMATION

- Verification with SeaHorn
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Deeply nested assertions

Ty

Verification with SeaHorn
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Deeply nested assertions

Assertion

SRL Ll

—
[
—=
o e
E Y v o A S Iy S .
)

Counter-examples are long
Hard to determine (from main) what is relevant

- Verification with SeaHorn
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Mixed Semantics [GWC'08,LQ14]

Stack-free program semantics combining:
» operational (or small-step) semantics
— 1.e., usual execution semantics

 natural (or big-step) semantics: function summary [Sharir-Pnueli 81]
— (%4, %) 2 |[f|| iff the execution of f on input state % terminates and results in state ¥4
e some execution steps are big, some are small

Non-deterministic executions of function calls

 update top activation record using function summary, or

» enter function body, forgetting history records (i.e., no return!)
Preserves reachability and non-termination

Theorem: Let K be the operational semantics, K™ the stack-free semantics,
and L a program location. Then,

K2EF (pc=L),KM™2EF (pc=L) and K?2EG (pcL), KM2EG (pcL)

Verification with SeaHorn
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rdef mainl)~ ~ ~ ~ ~ ~ 1
I'1: int x =
:2: X = X+1;
| 3: while(x>=0)
14: x=Ff(x);

I5: if(x<0)

l'e: Error;
I
7/
1 8:
|

END;

W [ N | -

l'def f(int y): ret y
19:  if(y,10){ [

(1-x-9 £x=x)C

 10: y=y+1; (x-0 A x’=x-1)

111: y=f(y);

112: else if(y»>0) : X <0

:13: y=y+1; I

I 14: y=y_1 I

1 15: I
____________ . |

| Summary of f(y) ':

' (1y9 £y=y) C

! y-0 £ y’ =y-1) : 8:-END

10
S ye9
y y' = y+1l :
y' = f(y)
12
y >0 ?
y =y+1
6:Errorl |14 <<i::::>
l y =y-1
:

Verification with SeaHorn
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Mixed Semantics as Program Transformation

else plypew ();
if (—cl) goto error;
assume (false);

main ()
pl (); p1 ();
assert (cl);
Pl %2 0): Mixed Semantics
assert (c2);
p2 ()
assert (c3);
m@innew () p]-entfry . p]-new O
if (*) goto plentry;  if (¥) goto p2eniry; P2new ();
else plypew (); else p2new (); assume (c2);
if (*) goto plentry; if (—c2) goto error;  P2pew ()

P2entry : assume (c3);
if (—c3) goto error;
assume (false);

error : assert (false);

Verification with SeaHorn

© 2015 Carnegie Mellon University
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Mixed Semantics: Summary

Every procedure is inlined at most once
* in the worst case, doubles the size of the program

 can be restricted to only inline functions that directly or indirectly call errror()
function

Easy to implement at compiler level
 create “failing” and “passing” versions of each function
 reduce “passing” functions to returning paths

 in main(), introduce new basic block bb.F for every failing function F(), and
call failing.F in bb.F

* inline all failing calls

 replace every call to F to non-deterministic jump to bb.F or call to passing F
Increases context-sensitivity of context-insensitive analyses

 context of failing paths is explicit in main (because of inlining)

» enables / improves many traditional analyses

Verification with SeaHorn
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SOLVING CHC WITH SMT

Verification with SeaHorn
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Verification by Evolving Approximations
[approx. 2]

approx. 1

solver

@&

g

Inductive Invariant

Safe?

NoO

solver

@&

g

Inductive Invariant

Safe?

[approx. 3]

NoO

2
\ 4

g

Inductive Invariant

No
Safe?

Verification with SeaHorn
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Spacer: Solving CHC in Z3

Spacer: solver for SMT-constrained Horn Clauses
» stand-alone implementation in a fork of Z3
* http://bitbucket.org/spacer/code
Support for Non-Linear CHC
* model procedure summaries in inter-procedural verification conditions
* model assume-guarantee reasoning
» uses MBP to under-approximate models for finite unfoldings of predicates
» uses MAX-SAT to decide on an unfolding strategy
Supported SMT-Theories
» Best-effort support for arbitrary SMT-theories
— data-structures, bit-vectors, non-linear arithmetic
 Full support for Linear arithmetic (rational and integer)
* Quantifier-free theory of arrays
— only quantifier free models with limited applications of array equality

- Verification with SeaHorn
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http://bitbucket.org/spacer/code

CRAB: Cornucopia of Abstractions

A library of abstract domains build on top of NASA Ikos (Inference
Kernel for Open Static Analyzers)

A language-independent intermediate representation
Many abstract domains

* intervals (with congruences) (with uninterpreted functions)
» zones, dbms, octagons
 pointer analysis with offsets
 array analysis with smashing
Fixpoint iteration library

 precise interleaving between widening and narrowing
 extensible with thresholds

Efficient reusable data-structure
« simple API for integrating new abstract domains

- Verification with SeaHorn
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RESULTS

Verification with SeaHorn
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SV-COMP 2015 http://sv-comp.sosy-lab.org/2015/

4" Competition on Software Verification held (here!) at TACAS 2015
Goals

» Provide a snapshot of the state-of-the-art in software verification to the
community.

* Increase the visibility and credits that tool developers receive.
» Establish a set of benchmarks for software verification in the community.
Participants:

« Over 22 participants, including most popular Software Model Checkers and
Bounded Model Checkers

Benchmarks:
» C programs with error location (programs include pointers, structures, etc.)
* Over 6,000 files, each 2K — 100K LOC
 Linux Device Drivers, Product Lines, Regressions/Tricky examples
 http://sv-comp.sosy-lab.org/2015/benchmarks.php

- Verification with SeaHorn
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http://sv-comp.sosy-lab.org/2015/benchmarks.php
http://sv-comp.sosy-lab.org/2015/

Results for DeviceDriver category
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Verification with SeaHorn
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Detecting Buffer Overflow in Auto-pilot software

Show absence of Buffer Overflows in T | ‘
e paparazzi and mnav autopilots .
Automatically instrument buffer accesses with runtime checks

Use SeaHorn to validate that run-time checks never falil
e somewhat slower than pure abstract interpretation

e much more precise!

Front-End - Large}
LLVM Pass to inserﬂ\ Rl [
procedural Pointer, V
o — |
f/

BO checks Memory}

Front End Middle End Back End

Verification with SeaHorn
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Conclusion

SeaHorn (http://seahorn.qgithub.io)
 a state-of-the-art Software Model Checker
e LLVM-based front-end
« CHC-based verification engine
» a framework for research in logic-based verification

The future
* making SeaHorn useful to users of verification technology
— counterexamples, build integration, property specification, proofs, etc.
* targeting many existing CHC engines
— specialize encoding and transformations to specific engines
— communicate results between engines
* richer properties
— termination, liveness, synthesis

- Verification with SeaHorn
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http://seahorn.github.io
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Contact Information

Arie Gurfinkel, Ph. D.

Sr. Researcher

CSC/SSD

Telephone: +1 412-268-5800
Email: info@sei.cmu.edu

Web
www.seil.cmu.edu
www.sel.cmu.edu/contact.cfm

U.S. Mail

Software Engineering Institute
Customer Relations

4500 Fifth Avenue

Pittsburgh, PA 15213-2612
USA

Customer Relations
Email: info@sel.cmu.edu

Telephone: +1 412-268-5800
SEIl Phone: +1 412-268-5800
SEI Fax: +1 412-268-6257
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Programs, Cexs, Invariants

A program P = (V, Init, 2, Bad)
e Notation: F(X) =9 u . (X £ %2) C Init
P is UNSAFE if and only if there exists a number N s.t.

N—-1
Init(vg) A /\ p(vi,v;01) | A Bad(vy) & L
i=0
P is SAFE if and only if there exists a safe inductive invariant Inv s.t.

Init(u) = Inv(u)

Inductive

Inv(u) A p(u,v) = Inv(v)

Inv(u) = —Bad(u) Safe

- Verification with SeaHorn
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IC3/PDR Algorithm Overview

bounded
safety

Input: Safety problem (Init(X), Tr(X, X'), Bad

Fy < Init ; N < 0 repeat
[ G < PDRMKSAFE([Fy,. .., Fx], Bad) V |
if G = || then return Reachable;

[ Fy,...,Fn < PpRPUSH([Fy,. .., Fx]) ]
if 30 <1 < N - F; = F;11 then return Unreg’ hable;
N+ N+1;Fy <+ strengthen

until oo; .

Verification with SeaHorn

=== Software Engineering Institute | Carnegie Mellon University = Gurfinkel, 2015
= : y . _



PdrMkSafe

IC3/PDR In Pictures

- Verification with SeaHorn
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