
© 2015 Carnegie Mellon University

Algorithmic Logic-Based
Verification with SeaHorn

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Arie Gurfinkel with Teme Kahsai and
Jorge A. Navas

based on work with Anvesh
Komuravelli, and Nikolaj Bjørner

Presenter
Presentation Notes
Title SlideTitle and Subtitle text blocks should not be moved from their position if at all possible.

3
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

Automated

Analysis

Software Model Checking
with Predicate Abstraction

e.g., Microsoft’s SDV

Automated Software Analysis

Program
Correct

Incorrect

Abstract Interpretation
with Numeric Abstraction

e.g., ASTREE, Polyspace

4
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

Turing, 1936: “undecidable”

5
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University 5

Turing, 1949 Alan M. Turing. “Checking a large routine”, 1949

6
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

Three-Layers of a Program Verifier

Compiler
• compiles surface syntax a target machine
• embodies syntax with semantics

Verification Condition Generator
• transforms a program and a property to a verification

condition in logic
• employs different abstractions, refinements, proof-search strategies, etc.

Automated Theorem Prover / Reasoning Engine
• discharges verification conditions
• general purpose constraint solver
• SAT, SMT, Abstract Interpreter, Temporal Logic Model Checker,…

7
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

http://seahorn.github.io

8
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

SeaHorn Verification Framework

Arie Gurfinkel

Software Engineering Institute

Carnegie Mellon University

Temesghen Kahsai

Carnegie Mellon University

NASA Ames

Jorge A. Navas

SGT

NASA Ames

9
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

The Plan

Introduction

Architecture and Usage

Demonstration

Constrained Horn Clauses as an Intermediate Representation

From Programs to Logic

• generating verification conditions

Program Transformations for Verification

Solving Constrained Horn Clauses

• synthesizing inductive invariants and procedure summaries

Conclusion

10
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

SeaHorn Verification Framework

Key Features
• LLVM front-end(s)
• Constrained Horn Clauses to represent Verification Conditions
• Comparable to state-of-the-art tools at SV-COMP’15

Goals
• be a state-of-the-art Software Model Checker
• be a framework for experimenting and developing CHC-based verification

11
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

Related Tools

CPAChecker
• Custom front-end for C
• Abstract Interpretation-inspired verification engine
• Predicate abstraction, invariant generation, BMC, k-induction

SMACK / Corral
• LLVM-based front-end
• Reduces C verification to Boogie
• Corral / Q verification back-end based on Bounded Model Checking with SMT

UFO
• LLVM-based front-end (partially reused in SeaHorn)
• Combines Abstract Interpretation with Interpolation-Based Model Checking
• (no longer actively developed)

12
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

SeaHorn Philosophy

Build a state-of-the-art Software Model Checker
• useful to “average” users

– user-friendly, efficient, trusted, certificate-producing, …
• useful to researchers in verification

– modular design, clean separation between syntax, semantics, and logic, …
Stand on the shoulders of giants
• reuse techniques from compiler community to reduce verification effort

– SSA, loop restructuring, induction variables, alias analysis, …
– static analysis and abstract interpretation

• reduce verification to logic
– verification condition generation
– Constrained Horn Clauses

Build reusable logic-based verification technology
• “SMT-LIB” for program verification

13
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

SeaHorn Usage

> sea pf FILE.c
Outputs sat for unsafe (has counterexample); unsat for safe
Additional options
• --cex=trace.xml outputs a counter-example in SV-COMP’15 format
• --show-invars displays computed invariants
• --track={reg,ptr,mem} track registers, pointers, memory content
• --step={large,small} verification condition step-semantics

– small == basic block, large == loop-free control flow block
• --inline inline all functions in the front-end passes

Additional commands
• sea smt – generates CHC in extension of SMT-LIB2 format
• sea clp -- generates CHC in CLP format (under development)
• sea lfe-smt – generates CHC in SMT-LIB2 format using legacy front-end

14
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

Verification Pipeline

clang | pp | ms |opt | horn

front-end

compile pre-process

mixed
semantics

optimize

VC gen &
solve

15
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

DEMO

16
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

From Programming to Modeling

Extend C programming language with 3 modeling features

Assertions
• assert(e) – aborts an execution when e is false, no-op otherwise

Non-determinism
• nondet_int() – returns a non-deterministic integer value

Assumptions
• assume(e) – “ignores” execution when e is false, no-op otherwise

void assert (_Bool b) { if (!b) abort(); }

int nondet_int () { int x; return x; }

void assume (_Bool e) { while (!e) ; }

17
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

INTERMEDIATE
REPRESENTATION

Constrained Horn Clauses

18
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

Constrained Horn Clauses (CHC)

A Constrained Horn Clause (CHC) is a FOL
formula of the form
 8 V . (Á Æ p1[X1] Æ…Æ pn[Xn] → h[X]),
 where
• A is a background theory (e.g., Linear Arithmetic, Arrays,

Bit-Vectors, or combinations of the above)
• Á is a constrained in the background theory A
• p1, …, pn, h are n-ary predicates
• pi[X] is an application of a predicate to first-order terms

19
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

Example Horn Encoding

20
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

CHC Terminology

Rule h[X] Ã p1[X1],…, pn[Xn], Á.

Query false Ã p1[X1],…, pn[Xn], Á.

Fact h[X] Ã Á.

Linear CHC h[X] Ã p[X1], Á.

Non-Linear CHC h[X] Ã p1[X1],…, pn[Xn], Á.
for n > 1

head body constraint

21
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

CHC Satisfiability

A model of a set of clauses ¦ is an interpretation of each predicate pi that
makes all clauses in ¦ valid

A set of clauses is satisfiable if it has a model, and is unsatisfiable
otherwise

A model is A-definable, it each pi is definable by a formula Ãi in A

22
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

Example Horn Encoding

23
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

Relationship between CHC and Verification

A program satisfies a property iff corresponding CHCs are satisfiable
• satisfiability-preserving transformations == safety preserving

Models for CHC correspond to verification certificates
• inductive invariants and procedure summaries

Unsatisfiability (or derivation of FALSE) corresponds to counterexample
• the resolution derivation (a path or a tree) is the counterexample

CAVEAT: In SeaHorn the terminology is reversed
• SAT means there exists a counterexample – a BMC at some depth is SAT
• UNSAT means the program is safe – BMC at all depths are UNSAT

24
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

FROM PROGRAMS TO
CLAUSES

25
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

Hoare Triples

A Hoare triple {Pre} P {Post} is valid iff every terminating execution of P
that starts in a state that satisfies Pre ends in a state that satisfies Post
Inductive Loop Invariant

Function Application

Recursion

Pre) Inv {InvÆC} Body {Inv} InvÆ:C) Post

{Pre} while C do Body {Post}

(PreÆp=a)) P {P} BodyF {Q} (QÆp,r=a,b)) Post

{Pre} b = F(a) {Post}

{Pre} b = F(a) {Post} ` {Pre} BodyF {Post}

{Pre} b = F(a) {Post}

26
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

Weakest Liberal Pre-Condition

Validity of Hoare triples is reduced to FOL validity by applying a
predicate transformer

Dijkstra’s weakest liberal pre-condition calculus [Dijkstra’75]

 wlp (P, Post)

weakest pre-condition ensuring that executing P ends in Post

 {Pre} P {Post} is valid , Pre) wlp (P, Post)

27
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

A Simple Programming Language

Prog ::= def Main(x) { bodyM }, …, def P (x) { bodyP }

body ::= stmt (; stmt)*

stmt ::= x = E | assert (E) | assume (E) |
 while E do S | y = P(E) |
 L:stmt | goto L (optional)

E := expression over program variables

28
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

Horn Clauses by Weakest Liberal Precondition

Prog ::= def Main(x) { bodyM }, …, def P (x) { bodyP }

wlp (x=E, Q) = let x=E in Q
wlp (assert(E) , Q) = E Æ Q
wlp (assume(E), Q) = E → Q
wlp (while E do S, Q) = I(w) Æ
 8w . ((I(w) Æ E) → wlp (S, I(w))) Æ ((I(w) Æ :E) → Q))
wlp (y = P(E), Q) = ppre(E) Æ (8 r. p(E, r) → Q[r/y])

ToHorn (def P(x) {S}) = wlp (x0=x;assume(ppre(x)); S, p(x0, ret))
ToHorn (Prog) = wlp (Main(), true) Æ 8{P 2 Prog} . ToHorn (P)

29
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

Example of a WLP Horn Encoding

{y ¸ 0} P {x = xold+yold} is true iff the query C3 is satisfiable

{Pre: y¸ 0}
 xo = x;
 yo = y;
 while y > 0 do
 x = x+1;
 y = y−1;
{Post: x=xo+yo}

C1: I(x,y,x,y) Ã y¸0.
C2: I(x+1,y-1,xo,yo) Ã I(x,y,xo,yo), y>0.
C3: false Ã I(x,y,xo,yo), y·0, x≠xo+yo

ToHorn

30
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

Example Horn Encoding

31
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

From CFG to Cut Point Graph

A Cut Point Graph hides (summarizes) fragments of a control flow graph
by (summary) edges

Vertices (called, cut points) correspond to some basic blocks

An edge between cut-points c and d summarizes all finite (loop-free)
executions from c to d that do not pass through any other cut-points

32
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

Cut Point Graph Example

1

2

3 4

5

6

1

6

CFG CPG

33
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

PROGRAM TRANSFORMATION
Mixed Semantics

34
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

Deeply nested assertions

Assertion

Main

35
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

Deeply nested assertions

Counter-examples are long
Hard to determine (from main) what is relevant

Assertion

Main

36
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

Mixed Semantics

Stack-free program semantics combining:
• operational (or small-step) semantics

– i.e., usual execution semantics
• natural (or big-step) semantics: function summary [Sharir-Pnueli 81]

– (¾, ¾`) 2 ||f|| iff the execution of f on input state ¾ terminates and results in state ¾’
• some execution steps are big, some are small

Non-deterministic executions of function calls
• update top activation record using function summary, or
• enter function body, forgetting history records (i.e., no return!)

Preserves reachability and non-termination
 Theorem: Let K be the operational semantics, Km the stack-free semantics,

and L a program location. Then,

K ² EF (pc=L) , Km ² EF (pc=L) and K ² EG (pc≠L) , Km ² EG (pc≠L)

[GWC’08,LQ’14]

37
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

def main()
1: int x = nd();
2: x = x+1;
3: while(x>=0)
4: x=f(x);
5: if(x<0)
6: Error;
7:
8: END;

def f(int y): ret y
9: if(y¸10){
10: y=y+1;
11: y=f(y);
12: else if(y>0)
13: y=y+1;
14: y=y-1
15:

Summary of f(y)
 (1·y·9 Æ y’=y) Ç

(y·0 Æ y’=y-1)

1

2

3

4

6:Error

9

10

11

12

y ¸ 10

y · 9
y’ = y+1

y’ = f(y)

5

7 8:END

13

14

15

y · 0

y’= y+1

y’= y-1

x ¸ 0

x’=nd()

x’ = f(x)

x < 0
x ¸ 0

x < 0

x’=x+1 y’=x

y’=y

 (1·x·9 Æ x’=x) Ç
(x·0 Æ x’=x-1)

x=3

x=4

x=4

x=4

y=4

y > 0

y=4

y=4

y=5

y=4

38
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

Mixed Semantics as Program Transformation

Mixed Semantics

39
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

Mixed Semantics: Summary

Every procedure is inlined at most once
• in the worst case, doubles the size of the program
• can be restricted to only inline functions that directly or indirectly call errror()

function
Easy to implement at compiler level
• create “failing” and “passing” versions of each function
• reduce “passing” functions to returning paths
• in main(), introduce new basic block bb.F for every failing function F(), and

call failing.F in bb.F
• inline all failing calls
• replace every call to F to non-deterministic jump to bb.F or call to passing F

Increases context-sensitivity of context-insensitive analyses
• context of failing paths is explicit in main (because of inlining)
• enables / improves many traditional analyses

40
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

SOLVING CHC WITH SMT

41
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

Verification by Evolving Approximations

Inductive Invariant

Lemma2

Lemma1
Lemma3

Safe?

Inductive Invariant

Lemma2

Lemma1
Lemma3

Safe?

Inductive Invariant

Lemma2

Lemma1
Lemma3

Safe?
No No No

solver solver solver

approx. 1 approx. 2 approx. 3

42
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

Spacer: Solving CHC in Z3

Spacer: solver for SMT-constrained Horn Clauses
• stand-alone implementation in a fork of Z3
• http://bitbucket.org/spacer/code

Support for Non-Linear CHC
• model procedure summaries in inter-procedural verification conditions
• model assume-guarantee reasoning
• uses MBP to under-approximate models for finite unfoldings of predicates
• uses MAX-SAT to decide on an unfolding strategy

Supported SMT-Theories
• Best-effort support for arbitrary SMT-theories

– data-structures, bit-vectors, non-linear arithmetic
• Full support for Linear arithmetic (rational and integer)
• Quantifier-free theory of arrays

– only quantifier free models with limited applications of array equality

http://bitbucket.org/spacer/code

43
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

CRAB: Cornucopia of Abstractions

A library of abstract domains build on top of NASA Ikos (Inference
Kernel for Open Static Analyzers)
A language-independent intermediate representation
Many abstract domains
• intervals (with congruences) (with uninterpreted functions)
• zones, dbms, octagons
• pointer analysis with offsets
• array analysis with smashing

Fixpoint iteration library
• precise interleaving between widening and narrowing
• extensible with thresholds

Efficient reusable data-structure
• simple API for integrating new abstract domains

44
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

RESULTS

45
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

SV-COMP 2015

4th Competition on Software Verification held (here!) at TACAS 2015
Goals
• Provide a snapshot of the state-of-the-art in software verification to the

community.
• Increase the visibility and credits that tool developers receive.
• Establish a set of benchmarks for software verification in the community.

Participants:
• Over 22 participants, including most popular Software Model Checkers and

Bounded Model Checkers
Benchmarks:
• C programs with error location (programs include pointers, structures, etc.)
• Over 6,000 files, each 2K – 100K LOC
• Linux Device Drivers, Product Lines, Regressions/Tricky examples
• http://sv-comp.sosy-lab.org/2015/benchmarks.php

http://sv-comp.sosy-lab.org/2015/

http://sv-comp.sosy-lab.org/2015/benchmarks.php
http://sv-comp.sosy-lab.org/2015/

46
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

Results for DeviceDriver category

47
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

Detecting Buffer Overflow in Auto-pilot software

Show absence of Buffer Overflows in
• paparazzi and mnav autopilots

Automatically instrument buffer accesses with runtime checks
Use SeaHorn to validate that run-time checks never fail
• somewhat slower than pure abstract interpretation
• much more precise!

LLVM Pass to insert
BO checks

48
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

Conclusion

SeaHorn (http://seahorn.github.io)
• a state-of-the-art Software Model Checker
• LLVM-based front-end
• CHC-based verification engine
• a framework for research in logic-based verification

The future
• making SeaHorn useful to users of verification technology

– counterexamples, build integration, property specification, proofs, etc.
• targeting many existing CHC engines

– specialize encoding and transformations to specific engines
– communicate results between engines

• richer properties
– termination, liveness, synthesis

http://seahorn.github.io

mailto:temesghen.kahsaiazene@nasa.gov
mailto:temesghen.kahsaiazene@nasa.gov
mailto:temesghen.kahsaiazene@nasa.gov

50
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

Contact Information

Arie Gurfinkel, Ph. D.
Sr. Researcher
CSC/SSD
Telephone: +1 412-268-5800
Email: info@sei.cmu.edu

U.S. Mail
Software Engineering Institute
Customer Relations
4500 Fifth Avenue
Pittsburgh, PA 15213-2612
USA

Web
www.sei.cmu.edu
www.sei.cmu.edu/contact.cfm

Customer Relations
Email: info@sei.cmu.edu
Telephone: +1 412-268-5800
SEI Phone: +1 412-268-5800
SEI Fax: +1 412-268-6257

51
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

Programs, Cexs, Invariants

A program P = (V, Init, ½, Bad)
• Notation: F(X) = 9 u . (X Æ ½) Ç Init

P is UNSAFE if and only if there exists a number N s.t.

P is SAFE if and only if there exists a safe inductive invariant Inv s.t.

Inductive

Safe

52
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

IC3/PDR Algorithm Overview bounded
safety

strengthen
result

53
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

IC3/PDR in Pictures PdrMkSafe

54
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

IC3/PDR in Pictures
Cex Queue

Trace

Frame R0 Frame R1
lemma

cex

PdrMkSafe

55
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

Inductive

IC3/PDR in Pictures PdrPush

56
Verification with SeaHorn
Gurfinkel, 2015
© 2015 Carnegie Mellon University

Inductive

IC3/PDR in Pictures PdrPush

PDR Invariants

 Ri → : Bad Init → Ri

 Ri → Ri+1 Ri Æ ½ → Ri+1

	Algorithmic Logic-Based Verification with SeaHorn
	Automated Software Analysis
	Slide Number 4
	Turing, 1949
	Three-Layers of a Program Verifier
	Slide Number 7
	SeaHorn Verification Framework
	The Plan
	SeaHorn Verification Framework
	Related Tools
	SeaHorn Philosophy
	SeaHorn Usage
	Verification Pipeline
	DEMO
	From Programming to Modeling
	Intermediate representation
	Constrained Horn Clauses (CHC)
	Example Horn Encoding
	CHC Terminology
	CHC Satisfiability
	Example Horn Encoding
	Relationship between CHC and Verification
	From Programs to Clauses
	Hoare Triples
	Weakest Liberal Pre-Condition
	A Simple Programming Language
	Horn Clauses by Weakest Liberal Precondition
	Example of a WLP Horn Encoding
	Example Horn Encoding
	From CFG to Cut Point Graph
	Cut Point Graph Example
	Program transformation
	Deeply nested assertions
	Deeply nested assertions
	Mixed Semantics
	Slide Number 37
	Mixed Semantics as Program Transformation
	Mixed Semantics: Summary
	Solving chc with smt
	Verification by Evolving Approximations
	Spacer: Solving CHC in Z3
	CRAB: Cornucopia of Abstractions
	REsults
	SV-COMP 2015
	Results for DeviceDriver category
	Detecting Buffer Overflow in Auto-pilot software
	Conclusion
	Available postdoctoral positions
	Contact Information
	Programs, Cexs, Invariants
	IC3/PDR Algorithm Overview
	IC3/PDR in Pictures
	IC3/PDR in Pictures
	IC3/PDR in Pictures
	IC3/PDR in Pictures

