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Automated 

Analysis 

Software Model Checking 
with Predicate Abstraction 

e.g., Microsoft’s SDV 

Automated Software Analysis 

Program 
Correct 

Incorrect 

Abstract Interpretation 
with Numeric Abstraction 

e.g., ASTREE, Polyspace 
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Turing, 1936:  “undecidable” 
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Turing, 1949 Alan M. Turing. “Checking a large routine”, 1949  
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Three-Layers of a Program Verifier 

Compiler 
• compiles surface syntax a target machine  
• embodies syntax with semantics 

 
Verification Condition Generator 
• transforms a program and a property to a                            verification 

condition in logic 
• employs different abstractions, refinements, proof-search strategies, etc. 

 
Automated Theorem Prover / Reasoning Engine 
• discharges verification conditions 
• general purpose constraint solver 
• SAT, SMT, Abstract Interpreter, Temporal Logic Model Checker,… 
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http://seahorn.github.io 
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The Plan 

Introduction 

Architecture and Usage 

Demonstration 

Constrained Horn Clauses as an Intermediate Representation 

From Programs to Logic 

• generating verification conditions 

Program Transformations for Verification 

Solving Constrained Horn Clauses 

• synthesizing inductive invariants and procedure summaries 

Conclusion 
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SeaHorn Verification Framework 

Key Features 
• LLVM front-end(s) 
• Constrained Horn Clauses to represent Verification Conditions 
• Comparable to state-of-the-art tools at SV-COMP’15 

Goals 
• be a state-of-the-art Software Model Checker 
• be a framework for experimenting and developing CHC-based verification 
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Related Tools 

CPAChecker 
• Custom front-end for C 
• Abstract Interpretation-inspired verification engine  
• Predicate abstraction, invariant generation, BMC, k-induction 

 
SMACK / Corral 
• LLVM-based front-end 
• Reduces C verification to Boogie 
• Corral / Q verification back-end based on Bounded Model Checking with SMT 

 
UFO 
• LLVM-based front-end (partially reused in SeaHorn) 
• Combines Abstract Interpretation with Interpolation-Based Model Checking 
• (no longer actively developed) 
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SeaHorn Philosophy 

Build a state-of-the-art Software Model Checker  
• useful to “average” users 

– user-friendly, efficient, trusted, certificate-producing, … 
• useful to researchers in verification 

– modular design, clean separation between syntax, semantics, and logic, … 
Stand on the shoulders of giants 
• reuse techniques from compiler community to reduce verification effort 

– SSA, loop restructuring, induction variables, alias analysis, … 
– static analysis and abstract interpretation 

• reduce verification to logic 
– verification condition generation 
– Constrained Horn Clauses 

Build reusable logic-based verification technology 
• “SMT-LIB” for program verification 
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SeaHorn Usage 

> sea pf FILE.c 
Outputs sat for unsafe (has counterexample); unsat for safe  
Additional options 
• --cex=trace.xml  outputs a counter-example in SV-COMP’15 format 
• --show-invars displays computed invariants 
• --track={reg,ptr,mem} track registers, pointers, memory content 
• --step={large,small} verification condition step-semantics 

– small == basic block, large == loop-free control flow block 
• --inline inline all functions in the front-end passes 

Additional commands 
• sea smt – generates CHC in extension of SMT-LIB2 format 
• sea clp  -- generates CHC in CLP format (under development) 
• sea lfe-smt – generates CHC in SMT-LIB2 format using legacy front-end 
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Verification Pipeline 

clang | pp | ms |opt | horn 

front-end 

compile pre-process 

mixed 
semantics 

optimize 

VC gen & 
solve 
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DEMO 
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From Programming to Modeling 

Extend C programming language with 3 modeling features 
 
Assertions 
• assert(e) – aborts an execution when e is false, no-op otherwise 
 

 
Non-determinism 
• nondet_int() – returns a non-deterministic integer value 

 
 

Assumptions 
• assume(e) – “ignores” execution when e is false, no-op otherwise 

 

void assert (_Bool b) { if (!b) abort(); } 

int nondet_int () { int x; return x; } 

void assume (_Bool e) { while (!e) ;  } 
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INTERMEDIATE 
REPRESENTATION 

Constrained Horn Clauses 
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Constrained Horn Clauses (CHC) 

A Constrained Horn Clause (CHC) is a FOL 
formula of the form        
  8 V . (Á Æ p1[X1] Æ…Æ pn[Xn] → h[X]), 
 where 
• A is a background theory (e.g., Linear Arithmetic, Arrays, 

Bit-Vectors, or combinations of the above) 
• Á is a constrained in the background theory A 
•  p1, …, pn, h are n-ary predicates 
• pi[X] is an application of a predicate to first-order terms 
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Example Horn Encoding 
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CHC Terminology 

Rule h[X] Ã p1[X1],…, pn[Xn], Á. 

Query false Ã p1[X1],…, pn[Xn], Á. 

Fact h[X] Ã Á. 

Linear CHC h[X] Ã p[X1], Á. 

Non-Linear CHC h[X] Ã p1[X1],…, pn[Xn], Á. 
for n > 1 

head body constraint 
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CHC Satisfiability 

A model of a set of clauses ¦ is an interpretation of each predicate pi that 
makes all clauses in ¦ valid 
 
A set of clauses is satisfiable if it has a model, and is unsatisfiable 
otherwise  
 
A model is A-definable, it each pi is definable by a formula Ãi in A 
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Example Horn Encoding 
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Relationship between CHC and Verification 

A program satisfies a property iff corresponding CHCs are satisfiable 
• satisfiability-preserving transformations == safety preserving  

 
Models for CHC correspond to verification certificates 
• inductive invariants and procedure summaries 

 
Unsatisfiability (or derivation of FALSE) corresponds to counterexample 
• the resolution derivation (a path or a tree) is the counterexample 

 
CAVEAT: In SeaHorn the terminology is reversed 
• SAT means there exists a counterexample – a BMC at some depth is SAT 
• UNSAT means the program is safe – BMC at all depths are UNSAT 
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FROM PROGRAMS TO 
CLAUSES 
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Hoare Triples 

A Hoare triple {Pre} P {Post} is valid iff every terminating execution of P 
that starts in a state that satisfies Pre ends in a state that satisfies Post 
Inductive Loop Invariant 
 
 
 
Function Application 
 
 
 
Recursion 

Pre ) Inv         {InvÆC} Body {Inv}            InvÆ:C ) Post 

{Pre} while C do Body {Post} 

(PreÆp=a) ) P                {P} BodyF {Q}          (QÆp,r=a,b) ) Post 

{Pre} b = F(a) {Post} 

{Pre} b = F(a) {Post}  ` {Pre} BodyF {Post} 

{Pre} b = F(a) {Post} 
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Weakest Liberal Pre-Condition 

Validity of Hoare triples is reduced to FOL validity by applying a 
predicate transformer 
 
 
Dijkstra’s weakest liberal pre-condition calculus [Dijkstra’75] 
  

 wlp (P, Post) 
 
weakest pre-condition ensuring that executing P ends in Post  
 
 
   {Pre} P {Post} is valid          ,       Pre ) wlp (P, Post) 
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A Simple Programming Language 

Prog  ::= def Main(x) { bodyM }, …, def P (x) { bodyP } 
 
body  ::= stmt (; stmt)* 
 
stmt  ::= x = E | assert (E) | assume (E) |  
          while E do S | y = P(E) | 
          L:stmt | goto L             (optional) 
 
E     := expression over program variables 
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Horn Clauses by Weakest Liberal Precondition 

Prog ::= def Main(x) { bodyM }, …, def P (x) { bodyP } 
 
wlp (x=E, Q) = let x=E in Q 
wlp (assert(E) , Q) = E Æ Q 
wlp (assume(E), Q) = E → Q 
wlp (while E do S, Q) = I(w) Æ  
                     8w . ((I(w) Æ E) → wlp (S, I(w))) Æ ((I(w) Æ :E) → Q)) 
wlp (y = P(E), Q) = ppre(E) Æ (8 r. p(E, r) → Q[r/y]) 
 
ToHorn (def P(x) {S}) = wlp (x0=x;assume(ppre(x)); S, p(x0, ret)) 
ToHorn (Prog) = wlp (Main(), true) Æ  8{P 2 Prog} . ToHorn (P)  
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Example of a WLP Horn Encoding 

{y ¸ 0} P {x = xold+yold} is true iff the query C3 is satisfiable 

{Pre: y¸ 0} 
 xo = x; 
 yo = y;  
 while y > 0 do 
   x = x+1; 
   y = y−1; 
{Post: x=xo+yo} 

C1: I(x,y,x,y) Ã y¸0. 
C2: I(x+1,y-1,xo,yo) Ã I(x,y,xo,yo), y>0. 
C3: false Ã I(x,y,xo,yo), y·0, x≠xo+yo  

ToHorn 
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Example Horn Encoding 
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From CFG to Cut Point Graph 

A Cut Point Graph hides (summarizes) fragments of a control flow graph 
by (summary) edges  
 
Vertices (called, cut points) correspond to some basic blocks 
 
An edge between cut-points c and d summarizes all finite (loop-free) 
executions from c to d that do not pass through any other cut-points 
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Cut Point Graph Example 

1 

2 

3 4 

5 

6 

1 

6 

CFG CPG 



33 
Verification with SeaHorn 
Gurfinkel, 2015 
© 2015 Carnegie Mellon University 

PROGRAM TRANSFORMATION 
Mixed Semantics 
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Deeply nested assertions 

Assertion 

Main 
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Deeply nested assertions 

Counter-examples are long 
Hard to determine (from main) what is relevant 

Assertion 

Main 
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Mixed Semantics 

Stack-free program semantics combining: 
• operational (or small-step) semantics 

– i.e., usual execution semantics 
• natural (or big-step) semantics: function summary [Sharir-Pnueli 81] 

– (¾, ¾`) 2 ||f|| iff the execution of f on input state ¾ terminates and results in state ¾’ 
• some execution steps are big, some are small 

Non-deterministic executions of function calls 
• update top activation record using function summary, or 
• enter function body, forgetting history records (i.e., no return!) 

Preserves reachability and non-termination 
 Theorem: Let K be the operational semantics, Km the stack-free semantics, 

and L a program location.  Then,            

K ² EF (pc=L) , Km ² EF (pc=L)     and    K ² EG (pc≠L) , Km ² EG (pc≠L) 

[GWC’08,LQ’14]  
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def main() 
1: int x = nd(); 
2: x = x+1;  
3: while(x>=0) 
4:   x=f(x); 
5:   if(x<0) 
6:      Error; 
7:  
8: END; 
 
def f(int y): ret y   
9:  if(y¸10){ 
10:    y=y+1; 
11:    y=f(y); 
12: else if(y>0) 
13:   y=y+1;  
14: y=y-1 
15: 

Summary of f(y)  
  (1·y·9 Æ y’=y)   Ç 

(y·0 Æ y’=y-1) 

1 

2 

3 

4 

6:Error 

9 

10 

11 

12 

y ¸ 10 

y · 9 
y’ = y+1 

y’ = f(y) 

5 

7 8:END 

13 

14 

15 

y · 0 

y’= y+1 

y’= y-1 

x ¸ 0 

x’=nd() 

x’ = f(x) 

x < 0 
x ¸ 0 

x < 0 

x’=x+1 y’=x 

y’=y 

   (1·x·9 Æ x’=x) Ç 
(x·0 Æ x’=x-1) 

x=3 

x=4 

x=4 

x=4 

y=4 

y > 0 

y=4 

y=4 

y=5 

y=4 
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Mixed Semantics as Program Transformation 

Mixed Semantics 
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Mixed Semantics: Summary 

Every procedure is inlined at most once 
• in the worst case, doubles the size of the program 
• can be restricted to only inline functions that directly or indirectly call errror() 

function 
Easy to implement at compiler level 
• create “failing” and “passing” versions of each function 
• reduce “passing” functions to returning paths 
• in main(), introduce new basic block bb.F for every failing function F(), and 

call failing.F in bb.F 
• inline all failing calls 
• replace every call to F to non-deterministic jump to bb.F or call to passing F 

Increases context-sensitivity of context-insensitive analyses 
• context of failing paths is explicit in main (because of inlining) 
• enables / improves many traditional analyses 
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SOLVING CHC WITH SMT 



41 
Verification with SeaHorn 
Gurfinkel, 2015 
© 2015 Carnegie Mellon University 

Verification by Evolving Approximations 

Inductive Invariant 

Lemma2 

Lemma1 
Lemma3 

Safe? 

Inductive Invariant 

Lemma2 

Lemma1 
Lemma3 

Safe? 

Inductive Invariant 

Lemma2 

Lemma1 
Lemma3 

Safe? 
No No No 

solver solver solver 

approx. 1 approx. 2 approx. 3 
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Spacer: Solving CHC in Z3 

Spacer: solver for SMT-constrained Horn Clauses 
• stand-alone implementation in a fork of Z3 
• http://bitbucket.org/spacer/code 

Support for Non-Linear CHC 
• model procedure summaries in inter-procedural verification conditions 
• model assume-guarantee reasoning 
• uses MBP to under-approximate models for finite unfoldings of predicates 
• uses MAX-SAT to decide on an unfolding strategy 

Supported SMT-Theories 
• Best-effort support for arbitrary SMT-theories 

– data-structures, bit-vectors, non-linear arithmetic 
• Full support for Linear arithmetic (rational and integer) 
• Quantifier-free theory of arrays 

– only quantifier free models with limited applications of array equality 

http://bitbucket.org/spacer/code
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CRAB: Cornucopia of Abstractions 

A library of abstract domains build on top of NASA Ikos (Inference 
Kernel for Open Static Analyzers) 
A language-independent intermediate representation 
Many abstract domains 
• intervals (with congruences) (with uninterpreted functions) 
• zones, dbms, octagons 
• pointer analysis with offsets 
• array analysis with smashing 

Fixpoint iteration library 
• precise interleaving between widening and narrowing 
• extensible with thresholds 

Efficient reusable data-structure 
• simple API for integrating new abstract domains 
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RESULTS 
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SV-COMP 2015 

4th Competition on Software Verification held (here!) at TACAS 2015 
Goals 
• Provide a snapshot of the state-of-the-art in software verification to the 

community.  
• Increase the visibility and credits that tool developers receive.  
• Establish a set of benchmarks for software verification in the community.  

Participants: 
• Over 22 participants, including most popular Software Model Checkers and 

Bounded Model Checkers 
Benchmarks: 
• C programs with error location (programs include pointers, structures, etc.) 
• Over 6,000 files, each 2K – 100K LOC 
• Linux Device Drivers, Product Lines, Regressions/Tricky examples 
• http://sv-comp.sosy-lab.org/2015/benchmarks.php 

http://sv-comp.sosy-lab.org/2015/ 

http://sv-comp.sosy-lab.org/2015/benchmarks.php
http://sv-comp.sosy-lab.org/2015/
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Results for DeviceDriver category 
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Detecting Buffer Overflow in Auto-pilot software 

Show absence of Buffer Overflows in 
• paparazzi and mnav autopilots 

Automatically instrument buffer accesses with runtime checks 
Use SeaHorn to validate that run-time checks never fail 
• somewhat slower than pure abstract interpretation 
• much more precise! 

LLVM Pass to insert 
BO checks 
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Conclusion 

SeaHorn (http://seahorn.github.io) 
• a state-of-the-art Software Model Checker 
• LLVM-based front-end 
• CHC-based verification engine 
• a framework for research in logic-based verification 

 
The future 
• making SeaHorn useful to users of verification technology 

– counterexamples, build integration, property specification, proofs, etc. 
• targeting many existing CHC engines 

– specialize encoding and transformations to specific engines 
– communicate results between engines  

• richer properties 
– termination, liveness, synthesis 

http://seahorn.github.io


mailto:temesghen.kahsaiazene@nasa.gov
mailto:temesghen.kahsaiazene@nasa.gov
mailto:temesghen.kahsaiazene@nasa.gov
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CSC/SSD 
Telephone:  +1 412-268-5800 
Email:  info@sei.cmu.edu 

U.S. Mail 
Software Engineering Institute 
Customer Relations 
4500 Fifth Avenue 
Pittsburgh, PA 15213-2612 
USA 
 

Web 
www.sei.cmu.edu 
www.sei.cmu.edu/contact.cfm 
 
 

Customer Relations 
Email: info@sei.cmu.edu 
Telephone:  +1 412-268-5800 
SEI Phone:  +1 412-268-5800 
SEI Fax:    +1 412-268-6257 
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Programs, Cexs, Invariants 

A program P = (V, Init, ½, Bad) 
• Notation: F(X) = 9 u . (X Æ ½) Ç Init 

P is UNSAFE if and only if there exists a number N s.t. 
 
 
 
P is SAFE if and only if there exists a safe inductive invariant Inv s.t. 

Inductive 

Safe 
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IC3/PDR Algorithm Overview bounded 
safety 

strengthen 
result 
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IC3/PDR in Pictures PdrMkSafe 
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IC3/PDR in Pictures 
Cex Queue 

Trace 

Frame R0 Frame R1 
lemma 

cex 

PdrMkSafe 
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Inductive 

IC3/PDR in Pictures PdrPush 
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Inductive 

IC3/PDR in Pictures PdrPush 

PDR Invariants 

      Ri → : Bad     Init → Ri 

      Ri → Ri+1         Ri Æ ½ → Ri+1 
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